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Temporal Partitioning to Amortize Reconfiguration Overhead
for Dynamically Reconfigurable Architectures
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SUMMARY In these days, many dynamically reconfigurable architec-
tures have been introduced to fill the gap between ASICs and software-
programmed processors such as GPPs and DSPs. These reconfigurable
architectures have shown to achieve higher performance compared to
software-programmed processors. However, reconfigurable architectures
suffer from a significant reconfiguration overhead and a speedup limita-
tion. By reducing the reconfiguration overhead, the overall performance
of reconfigurable architectures can be improved. Therefore, we will de-
scribe temporal partitioning, which are able to amortize the reconfiguration
overhead at synthesis phase or compilation time. Our temporal partition-
ing methodology splits a configuration context into temporal partitions to
amortize reconfiguration overhead. And then, we will present benchmark
results to demonstrate the effectiveness of our methodology.
key words: temporal partitioning, reconfigurable architecture, partial re-
configuration, dynamic reconfiguration, run-time reconfiguration and high-
level synthesis

1. Introduction

Recently, reconfigurable architectures (RAs) become one of
the most promising computing devices to fill the gap be-
tween application specific integrated circuits (ASICs) and
software-programmed processors such as microprocessors,
general-purpose processors (GPPs), and digital signal pro-
cessors (DSPs), because they can provide both flexibility
and performance [10], [20]. Since general RAs contain an
array of configurable computing units and programmable
routing resources, they are able to have flexibility along
with performance. RAs are classified into statically re-
configurable architectures (SRAs) and dynamically recon-
figurable architectures (DRAs) based on their reconfigura-
tion scheme. In DRAs, there are two different configura-
tion memory styles; partial reconfiguration [3], [7], [23] and
multi-context switching [16], [21].

To most of statically reconfigurable architectures
(SRAs), the ratio of reconfiguration overhead in run-time
seems out of concern. They assume that thousands of it-
erations of single kernel may amortize long configuration
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overhead, eventually their RAs outperform microproces-
sors. However, in the case of dynamically reconfigurable ar-
chitectures (DRAs), the reconfiguration overhead dominates
run-time and greatly degrades the overall performance be-
cause the configuration may change multiple times even in
a single application execution. According to Callahan [24],
configuration overhead in Garp was up to 69% (including
data transfer). MorphoSys, in spite of its coarse granular-
ity, also wasted 1.6–41% (excluding data transfer) of execu-
tion time to configuration [21], depending on loop iteration
counts or complexity in applications.

In order to deal with the reconfiguration overhead,
there had been intensive research such as configuration
caching [8], configuration compression [5], [9], configura-
tion prefetching [12], [15], and temporal partitioning [6],
[14]. However, many researches such as configura-
tion caching, configuration compression, and configuration
prefetching require the additional hardware units onto re-
configurable architectures. It is too difficult to apply these
techniques to various DRAs without the modification of ar-
chitectures. Ganesan’s work [6] and Cardoso’s [14] have fo-
cused on software efforts such as temporal partitioning. But
these works target specific architecture models and have
some limitations as described later. In this paper, we will
propose a partitioning method which is able to amortize the
reconfiguration overhead without additional hardware units.
Therefore, our method can be applied to various DRAs.

The paper is organized as follows. First of all, Sect. 2
briefly describes software efforts to hide the reconfiguration
overhead in RAs domain. Section 3 outlines our target ar-
chitecture and execution model. Section 4 explains the pro-
posed temporal partitioning for configuration contexts. Sec-
tion 5 presents experimental results. Finally, Sect. 6 con-
cludes with a description of our on-going research for this
work.

2. Related Work

Ganesan and Vemuri [6] presented a novel partitioning
methodology that temporally partitions a design for a par-
tially reconfigurable processor and improves design latency
by minimizing reconfiguration overhead. This methodology
are integrated in the SPARCS (Synthesis and Partitioning
for Adaptive Reconfigurable Computing Systems) design
environment [4]. To minimize reconfiguration overhead is
achieved by overlapping execution of one temporal parti-
tion with the reconfiguration of another, using the partial
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reconfiguration capability. They have incorporated block-
processing [6] in the partitioning framework for reducing
reconfiguration overhead of partitioned designs. Their pro-
posed methodology was tested on several examples on the
Xilinx 6200 FPGA. However, this work uses the very sim-
ple model of splitting the available FPGA resources into two
same parts and mainly performing temporal partitioning us-
ing half of the total available area as the size constraint.
Moreover, it is difficult to reduce reconfiguration overhead
without block-processing,

The work by Cardoso [14] introduced a temporal parti-
tioning methodology with a loop dissevering technique [13]
for the coarse-grained XPP architecture [19]. Even though
the automated temporal partitioning is supported, his frame-
work requires manual temporal partitioning in order to re-
duce the reconfiguration overhead. Also, if a loop is not
mappable to a reconfigurable array due to resource con-
straints, a loop dissevering is used. This technique tem-
porally partitions only the loop that oversize the physically
available hardware resources. In this case, because the inner
loops are partitioned (no more potential for loop pipelining)
and each partition may not have require enough computation
time over reconfiguration time, the reconfiguration time can-
not be hidden by computation time. Thus, the performance
is degraded significantly. However, his work shows that a ju-
dicious selection of configurations might reduce the overall
execution time by overlapping the execution stages needed
for each configuration.

3. Reconfiguration Architectures and Execution Model

Usually, RAs are a regular array of configurable computing
units, which can be configured to perform different opera-
tions and different data routings. Each unit is called differ-
ently as Processing Array Element in [19], Reconfigurable
Cell in [21], Configurable Logic Block in FPGA domain, or
simply Tile in [22]. Afterwards, we will use a term of Re-
configurable Cells (RCs) as Singh et al. did in their work. A
typical reconfigurable system consists mainly of a host pro-
cessor and a two-dimensional array of RCs. The host pro-
cessor controls data and configuration transferred over RC
arrays, or executes parts of applications, especially sequen-
tial or small parts which are too expensive to run on RC
arrays. Each RC may have one or more Arithmetic Logic
Units (ALUs) or Look-Up Tables (LUTs) to compute op-
erations, and may have one or more registers to temporally
store computation results as operands of successive opera-
tions or inputs of other RCs. Also, each RC have switching
matrices, segmented buses or simply multiplexers to route
data.

In this paper, in order to make experiments practical,
we designed an experimental architecture which is very sim-
ilar to a commercial coarse-grained RA, PACT XPP [19].
Our architecture is a regular array of RCs as shown in
Fig. 1 (a). Along both sides of array, there are I/O ports
granting accesses to the shared global memory and the con-
figuration memory. Also, our architecture provides partial

reconfiguration and its atomic configuration unit is a sin-
gle RC. As illustrated in Fig. 1 (b), each RC includes a
main ALU and two side ALUs, one for forward routing and
the other for backward. The main ALU is able to perform
most low-level SUIF operations including arithmetic, log-
ical, shift, and multiplier operations. However, each side
ALU has a basic arithmetic and logical operators for data
routing. In addition, each RC contains two separate routing
layers, one for data routing and the other for configuration
routing.

Figure 2 shows execution models for static reconfigu-
ration and partial reconfiguration. In these models, the ex-
ecution of a configuration requires three stages: fetch, con-
figuration, and computation. Fetch stage is related to the
load of the configuration data to the RC array. In configura-
tion stage, the download of the configuration data from the
configuration memory in the RC array onto the array struc-
tures is performed and a local memory or registers in the
RC array is initialized with data to be used. In computa-
tion stage, the RC array performs pre-defined operations by
configuration generation stage in design flow, and generates
requested data. In temporal partitioning methods for SRAs,
each partition should be occupied onto nearly full recon-
figurable array as possible (e.g., [4]). Those schemes only
consider another partition after the current one has filled the

Fig. 1 Typical reconfigurable system.

Fig. 2 Execution model for target architectures.
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available resources and are insensible to the optimization
that must be applied to reduce the overall execution by over-
lapping the fetching, configuring and computing steps. The
execution of this case results in Fig. 2 (b)(i). If this partition
is split into three smaller partitions for dynamic reconfigu-
ration as shown in Fig. 2 (a). In DRAs with partial config-
uration, by overlapping each stage with different stages of
a previous partition, execution time is reduced as shown in
Fig. 2 (b)(ii). This execution model with partial reconfigura-
tion is our target execution model.

4. Temporal Partitioning

4.1 Framework Overview

Figure 3 shows our compiler framework for reconfigurable
systems. This is very similar to a general HW/SW co-design
framework. A bold box of this figure represents partition-
ing process, the scope of this paper. Our framework begins
with C Program and partitions it into HW and SW part. The
SW part is compiled into the executable by a regular com-
piler. This executable is executed on host processor simul-
taneously with collecting results of HW execution. The HW
part is first transformed into SUIF IR [25] by SUIF front-
end. Then, the temporal partitioning splits the whole kernel
into a sequence of configuration contexts. After temporal
partitioning, Place& Route process is performed with SUIF
IR and partition information in order to generate configura-
tion contexts for RC array.

Temporal partitioning is divided into two major pro-
cesses, generating configuration units and merging, as
shown in Fig. 3. In the generating process, control-data flow
graph (CDFG) of configuration units is constructed from
SUIF IR. A configuration unit will be explained later in this
paper. After the generating process, the merging process
begins with CDFG of configuration units. In merging pro-
cess, each node of CDFG means a single configuration con-
text and grows by merging with other nodes until constraints

Fig. 3 Compiler framework.

are fulfilled. Merging process is terminated when all nodes
are traversed. Then, a sequence of configuration contexts
are generated from SUIF IR with information of configura-
tion partitions through Placement and Routing (P&R) tool.
A sequence of configuration contexts lead the amortization
of reconfiguration overhead. The detailed discussion of the
partitioning process follows.

4.2 Generating Configuration Units

In this step, data flow graphs (DFGs) are extracted from
CDFG generated in preprocessor and configuration units are
generated from these DFGs. A configuration unit represents
a certain quantity of configuration data, which can be solely
assigned to a single reconfigurable cell (RC). Because a reg-
ular coarse-grained DRA can execute a sequence of opera-
tions or a complex operation on a single RC in contrast to a
regular fine-grained RA, the process of generating configu-
ration units is needed.

The algorithm to generate configuration units works as
in Fig. 4. This algorithm traverses DFGs in a depth-first
manner. It starts by generating a new configuration unit,
and the algorithm adds visited operation nodes to config-
uration unit until the RC resource constraints are satisfied.
The satisfaction of the resource constraints indicates that a
configuration unit can be mapped into a RC. These RC re-
source constraints are the number of operations, the number
of input / output ports, and the number of memory ports of
a single RC and obtained from machine description written
by users. If these constraints are not fulfilled or the current
node is not the successor of the previously-visited node, the
current configuration unit is completed and the algorithm
continues with a new configuration unit including the cur-
rent configuration unit. When all nodes of DFGs are visited,
the algorithm finally generates CDFG of configuration units.
In this CDFG, each node runs on a single RC and data flow

Fig. 4 Algorithm to generate configuration units.
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indicates routing information between RCs.

4.3 Merging of Candidate Partitions

Merging process begins with CDFG of configuration units.
In merging process, each node of CDFG represents a can-
didate partition and grows by merging with other candi-
dates while constraints are fulfilled. Merging is repeated
from node of maximal loop-nesting level (innermost loop)
to one of minimal level (outside of outermost loop) in struc-
tural order [18] until all nodes are traversed. At each itera-
tion, a speedup due to merging is estimated. If a speedup
is achieved, a candidate partition is added to a set of good
candidate partitions. Otherwise, a candidate is added to a
set of bad candidate partitions. Merging process makes use
of a set of bad candidate partitions to only merge with other
candidate partitions in order to easily estimate cost.

Before the merging process will be described in detail,
we give the following notations.

Pi : a candidate partition i
MEM : total size of configuration memory
Mi : size of configuration memory required by Pi

RC : total number of a reconfigurable cells
RCi: number of reconfigurable cells required by Pi

TFi : fetching time of Pi

TCi : configuration time of Pi

Tcoi : computation time of Pi

Ti : exposed execution time of Pi

- the estimated execution time excluding the time
overlapped with the preceding partition.

4.3.1 Merging and Time Estimations

Two or three candidate partitions to be merged should be
formed as one of patterns in Fig. 5. Each pattern can be
merged into a new single candidate partition. In the case of
sequential candidate partitions, two adjacent candidate par-
titions are selected to be merged. A loop can be merged
only when each of a loop control part and a loop body part
is represented by a single candidate partition, as shown in
Fig. 5 (b). In the case of branches, it is possible to merge
only when conditional branches can be represented by IF-
THEN (-ELSE) in high-level language and each of branch
control (IF), THEN, and ELSE part can be represented by a

Fig. 5 Merging patterns.

single candidate partition as illustrated in Fig. 5 (c). In order
to determine that a new candidate partition can be properly
configured onto a reconfigurable array, each pattern should
be tested with the following resource constraints. In the fol-
lowing, we write MP to denote a set of all candidate parti-
tions to be merged.

1. Configuration memory constraint
∑

Pi∈MP

Mi ≤ MEM

2. Area constraint
∑

Pi∈MP

RCi ≤ RC

If satisfying above constraints, each pattern is merged
into a new candidate partition. Fetch, configuration, and
computation time of each new one are estimated by the fol-
lowing equations. In these equations, if the number of iter-
ations (N) is unknown at compile-time, an arbitrary value is
given by users.

TCnew =
∑

Pi∈MP

TCi

TFnew =
∑

Pi∈MP

TFi

Tconew

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
Pi∈MP Tcoi ; SEQUENTIAL

N × (TcoFOR + TcoBODY ) + TcoFOR ; LOOP

∑
Pi∈MP Tcoi ; IF-THEN

TcoIF + max(TcoTHEN , TcoELS E ); IF-THEN-ELSE

4.3.2 Estimations of Performance Gain

After merging each pattern into a new candidate partition
as addressed earlier, the total execution time due to a new
one will be calculated in order to evaluate the performance
gain. However, it is very expensive operation to precisely
calculate the total execution time at every merging itera-
tions. Thus, in our framework, performance gain is eval-
uated by estimating the difference of execution time be-
fore/after merging.

Before estimating the difference of execution time be-
fore/after merging, the exposed execution time should be es-
timated. Figure 6 shows all possible execution cases of two
consequent partitions. The exposed execution time can be
estimated by the following equations.

• Case 1: TCi−1 ≥ TFi and Tcoi−1 ≤ TCi

Ti = Tcoi + TCi − Tcoi−1

• Case 2: TCi−1 ≤ TFi and TCi−1 + Tcoi−1 ≤ TFi + TCi

Ti = Tcoi + (TCi + TFi ) − (Tcoi−1 + TCi−1 )
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Fig. 6 Estimation of the exposed execution time.

Fig. 7 Estimation error of the exposed execution time.

• Case 3: TCi−1 + Tcoi−1 ≥ TFi + TCi

Ti = Tcoi

When the exposed execution time is estimated by the
above equations, the estimation error can be occurred. This
estimation error in the exposed execution time estimation
is caused by the skew in execution stages as illustrated in
Fig. 7. However, the estimation error in exposed execution
time estimation of sequential candidate partitions is not sig-
nificant for the overall execution time because the estimated
execution time is always longer than the real one. So this
error of sequential candidate partitions is ignored in this pa-
per.

Performance gain after merging sequential candidate
partitions can be easily evaluated with the above exposed ex-
ecution time estimation equations and time estimation equa-
tions for a new candidate as stated in Sect. 4.3.1. When two
sequential candidate partitions Pi and Pi+1 are merged into
a new candidate partition Pnew, the difference in the total
exposed execution time between before and after merging
is affected by a subsequent partition Pi+2 as well as Pnew.
Thus, the exposed execution time of Pi+2 after merging has
to be estimated again. Performance gain in the total exposed
execution time can be estimated by the following equation.

Tbefore merging = Ti + Ti+1 + Ti+2

Tafter merging = Tnew + T ′i+2

gain = Tbefore merging − Tafter merging

As stated earlier, in order to merge a loop into a can-
didate partition, each of loop control and body parts have
to be represented by a single candidate partition. Figure 8
shows how a loop is executed before and after merging. In
the figure, Pi represents loop control part and Pi+1 represents
body part. Each exposed execution time of loop control part

Fig. 8 Merging a loop into a single candidate partition.

and body part can be easily estimated by the above exposed
execution time estimation equations in the same manner as
merging of sequential candidate partitions. However, in ev-
ery iteration except the first iteration, the exposed execution
time of body part can be different, as Ti+1 and T ′i+1 shown
in Fig. 8. After the first iteration, the configuration stage
and computation stage of loop control part can be delayed.
The delay causes the exposed execution time of body part
to be changed. This estimation error is significant because
it is accumulated by loop iterations. Thus, this error should
be corrected. From the figure, changed exposed execution
time T ′i+1 is reduced by delay of the configuration time and
computation time of loop control part. Those delays can
be expressed by (TCi+1 − TFi ) and (Tcoi+1 − TCi ). Therefore,
the changed exposed execution time can be estimated by the
following equation.

T ′i+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ti+1 − (TCi+1 − TFi ) − (Tcoi+1 − TCi )

if TFi < TCi+1 and TCi < Tcoi+1

Ti+1 − (TCi+1 − TFi )

if TFi < TCi+1 and TCi > Tcoi+1

Ti+1 otherwise

Using the previous formulae, we are able to derive the
following equation for the estimation of the overall execu-
tion time of a loop.

Tloop = TFi + TCi + Tcoi + N × (Ti + T ′i+1)

After merging, because the fetching and configuration
of loop is executed only once, the overall execution time
can be easily estimated by the following equation without
the exposed execution time estimation.

Tnew = TFi+TCi+Tcoi+TFi+1+TCi+1+N × (Tcoi+1+Tcoi )

Therefore, the difference of the total execution time is esti-
mated by the following equation.

gain = Tloop − Tnew

When the fetching and configuration time cannot be
fully amortized in loop iterations, the execution time of loop
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before merging is longer than one after merging. How-
ever, when the fetching and configuration time can be fully
amortized in loop iterations, the execution before merging
is faster. In order to amortize the fetching and configuration
time in loop iterations, the computation time should be suffi-
cient or the fetching and configuration time should be short
enough to hide. The increase of computation time can be
achieved by merging the innermost loop in nested loops.

4.3.3 Algorithm

An algorithm to perform temporal partitioning of configu-
ration contexts is shown in Fig. 9. An input of algorithm
is CDFG of configuration units and a sequence of config-
uration partitions are generated finally. The algorithm be-
gins with the configuration unit including the first BODY-
part of the maximal loop-nesting level (innermost loop) and
traverse each configuration unit from the innermost block
to the outermost in structural order until all configuration
units are traversed. Each iteration of the algorithm per-
forms merging and time estimations of a new candidate par-
tition. These steps are already illustrated in Sect. 4.3.1. The
update_CDFG() function alters the candidate partitions to
be merged into a new hyper-one in CDFG. Then, the perfor-
mance gain due to merging is estimated as the same manner
described in Sect. 4.3.2. If the performance gain is achieved,
a new candidate is added into CP_set. Even if the perfor-

Fig. 9 Algorithm for merging.

mance gain is not achieved, a new candidate is kept as a
bad candidate partition in BCP_set to be merged with the
next candidate partition in structural order. Therefore, the
CP_set set preserves a good candidate partitions during the
merging process. Moreover, at the end of the algorithm,
while the BCP_set cannot be mapped to RAs, the CP_set
represents the final set of configuration partitions.

5. Experiments

5.1 Experimental Setup

In order to evaluate the performance of the proposed tech-
niques, we use some benchmark kernel selected in two sets
of benchmark suites; MediaBench [2] and DSPStone [1].
These benchmark suites have been used widely for evalu-
ating various architectures and software optimizations such
as partitioning and compilers. In these benchmark suites,
we selected some interesting kernels; Reference IDCT in
MPEG2 decoder (MediaBench), LARp to rp in GSM (Me-
diaBench), and matrix multiplier (DSPStone). These pat-
terns are composed of the nested loops having mostly paral-
lel computations. For example, the Reference IDCT mainly
consists of two 3-nested-loops and each nested loop iterates
512 times (matrix multiplication with an 8× 8 block). Also,
30.20% of the time is spent in the Reference IDCT routine
from the MPEG2 decoder application profiles [11]. Thus,
these are suitable for evaluating the partitioning result for
dynamically reconfigurable architectures.

Partitioning framework in Sect. 4 has been imple-
mented. It takes C code as the source and, as the target,
produces the configuration context for the reconfiguration
architecture. In order to minimize the effect of our P&R al-
gorithm [17] and to guarantee that the computation time of
each partition is always minimized, our P&R tool maps di-
rectly DAGs of each partition onto a reconfigurable array.
In other words, each critical path of DAGs is routed linearly
from an input port to an output so that the computation time
cannot be increased artificially. However, this P&R method
requires larger reconfigurable array size than the ordinary
array size to implement applications. Therefore, we will
show the number of RCs required to implement. The perfor-
mance of the generated configuration context has been mea-
sured by means of our research purpose simulator, which is
cycle-accurate and displays cycle counts as the result. The
simulator can be tuned with the various hardware parame-
ters including a ratio of configuration time to computation
time and the size of reconfigurable array.

5.2 Results

Table 1 and Figs. 10, 11 show the obtained results when ap-
plying the proposed partitioning method to Reference IDCT
with different reconfigurable architecture parameters and an
8 × 8 input block. In the table, “# of partitions” shows
the number of partitions and “# of RCs (Max/Sum)” rep-
resents the number of RCs required by the largest partition
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Table 1 Results on Reference IDCT with various hardware parameters.

Reconfigurable array size 9 × 9 ∼ 10 × 10 11 × 11 12 × 12 13 × 13 static

# of partitions 14 7 5 3 1
# of RCs (Max/Sum) 17/46 21/41 23/40 24/38 38

Tconfiguration Execution time [ cycles ]
4405 4354 2729≤† 4148

4190
= (conf. time / comp. time) (76/4114)

2 cycles/RC Speedup 0.951 0.962 1.535 1.01 1
Tconfiguration Execution time [ cycles ]

8519 6574 2874≤† 4183
4266

= (conf. time / comp. time) (152/4114)
4 cycles/RC Speedup 0.5 0.65 1.484 1.02 1
Tconfiguration Execution time [ cycles ]

42591 24642 5182 4455≤† 4874
= (conf. time / comp. time) (760/4114)

20 cycles/RC Speedup 0.11 0.2 0.9 1.09 1
†It means that whenever the reconfigurable array size is larger than this case, the result is same.

Fig. 10 Total execution time of Reference IDCT.

Fig. 11 Reconfiguration overhead of Reference IDCT.

and the sum of RCs required by all partitions. The last col-
umn “static” means that the whole benchmark is mapped on
reconfigurable array at once.

When the reconfigurable array size is to 11 × 11, the
overall execution is slow, as shown in Table 1 and Fig. 10.

Fig. 12 Speedup on several benchmarks.

In this range, because each partition in loops have insuf-
ficient computation to hide the reconfiguration overhead,
the reconfiguration stage of each partition is performed ev-
ery iteration. Namely, because the innermost loop of Ref-
erence IDCT is reconfigured 512 times repeatedly, the re-
configuration overhead is significantly increased. When the
reconfigurable array size is 12 × 12 or 13 × 13, two inner
loops are merged into a single partition. And this merged
partition has sufficient computation time so that the recon-
figuration time of this partition can be amortized as shown
in Fig. 11. Therefore, the reconfiguration overhead is re-
duced by about 55% compared to the reconfiguration over-
head of static reconfiguration and the significant speedups
are achieved. One more thing we can notice from Table 1
is that when Tconfiguration is 2 and 4 cycles/RC, the overall
execution of the best partitioning results including recon-
figuration stages runs faster than the computation stage of
static cases. This means that reconfiguration overhead can
be fully eliminated when reconfigurable architectures have
relatively small configuration time.

Figure 12 shows several speedups obtained with the
proposed temporal partitioning and partition placement
method compared to the static reconfiguration. This
speedup factor is from 1.1 to 2.7 over static reconfigura-
tion. However, in the case of LARp to rp in GSM, there
is no improvement because the whole routine consists of a
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single loop and the body of that loop has insufficient com-
putation to hide the reconfiguration overhead. In this case,
the best performance is given when the whole application
is mapped. One thing we can notice from the above results
is that the performance using the proposed method is better
than mapping the whole application into a single configu-
ration when an application contains a sequence of loops or
several nested loops.

6. Conclusions and Future Works

This paper has presented a novel temporal partitioning
method to amortize reconfiguration overhead for the recon-
figurable architecture with the dynamic nature which can al-
low the general-purpose applications and the arbitrary num-
ber of input blocks. The proposed temporal partitioning
method splits a configuration context into temporal par-
titions in order to amortize the fetch and reconfiguration
overhead. When the generated temporal partitions are ex-
ecuted, by overlapping the execution stages (fetch, configu-
ration, and computation stages) on different configurations,
the better performance is achieved. The results with Ref-
erence IDCT reports that the proposed partitioning method
reduces about 55% of reconfiguration overhead. Also, the
results show that speedups of 1.1 to 2.7 over static recon-
figuration can be achieved. The results strongly confirm
that when applications include a sequence of loops or nested
loops, the proposed partitioning method may be more effec-
tive.

This framework does not currently consider loop trans-
formation techniques such as loop unrolling, loop fission,
and loop distribution. The loop transformation techniques
may lead to a substantial performance improvement in com-
bination with partitioning of configuration contexts. There-
fore, the on-going work focuses on the combination with
loop transformation techniques.

References

[1] V. Zivojnovic, J.M. Velarde, C. Schlager, and H. Mey, “DSPstone: A
DSP-oriented benchmarking methodology,” Proc. Signal Processing
Applications & Technology, pp.715–720, Dallas, TX, 1994.

[2] C. Lee, M. Potkonjak, and W.H. Mangione-Smith, “MediaBench:
A tool for evaluating and synthesizing multimedia and communica-
tons systems,” Proc. International Symposium on Microarchitecture,
pp.330–335, 1997.

[3] M.B. Gokhale and J.M. Stone, “NAPA C: Compiling for a hy-
brid RISC/FPGA architecture,” Proc. IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’98), pp.126–
135, 1998.

[4] I. Ouaiss, S. Govindarajan, V. Srinivasan, M. Kaul, and R. Vemuri,
“An integrated partitioning and synthesis system for dynamically re-
configurable multi-FPGA architectures,” 10th Reconfigurable Ar-
chitecture Workshop (RAW’98), pp.31–36, Orlando, FL, March
1998.

[5] S. Hauck, Z. Li, and E. Schwabe, “Configuration compression
for the Xilinx XC6200 FPGA,” Proc. IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM’99), pp.138–
146, Los Alamitos, CA, 1999.

[6] S. Ganesan and R. Vemuri, “An integrated temporal partitioning

and partial reconfiguration technique for design latency improve-
ment,” Proc. Conference on Design, Automation and Test in Europe
(DATE), Paris, France, March 2000.

[7] Z.A. Ye, A. Moshovos, S. Hauck, and P. Banerjee, “CHIMAERA: A
high-performance architecture with a tightly-coupled reconfigurable
functional unit,” Proc. International Symposium on Computer Ar-
chitecture (ISCA), pp.225–235, June 2000.

[8] Z. Li, K. Compton, and S. Hauck, “Configuration caching man-
agement techniques for reconfigurable computing,” Proc. IEEE
Symposium on Field-Programmable Custom Computing Machines
(FCCM’00), pp.87–96, 2000.

[9] Z. Li and S. Hauck, “Configuration compression for Virtex FPGAs,”
Proc. IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’01), pp.147–159, 2001.

[10] R. Hartenstein, “A decade of reconfigurable computing: A visionary
retrospective,” Proc. Conference on Design, Automation and Test in
Europe (DATE’01), pp.642–649, Munich, Germany, 2001.

[11] J.E. Carrillo and P. Chow, “The effect of reconfigurable units in
superscalar processors,” International Symposium on Field Pro-
grammable Gate Arrays, pp.141–150, Monterey, CA, 2001.

[12] Z. Li and S. Hauck, “Configuration prefetching techniques for par-
tial reconfigurable coprocessor with relocation and defragmenta-
tion,” Proc. 2002 ACM/SIGDA Tenth International Symposium on
Field-Programmable Gate Arrays (FPGA), pp.187–195, 2002.

[13] J.M.P. Cardoso, “Loop dissevering: A technique for temporally par-
titioning loops in dynamically reconfigurable computing platforms,”
Proc. 17th International Parallel and Distributed Processing Sympo-
sium (IPDPS 2003), p.181b, 2003.

[14] J.M.P. Cardoso and M. Weinhardt, “From C programs to the
configure-execute model,” Proc. Conference on Design, Automa-
tion and Test in Europe (DATE’03), pp.576–581, Munich, Germany,
March 2003.

[15] J. Resano, D. Mozos, and F. Catthoor, “A hybrid prefetch scheduling
heuristic to minimize at run-time the reconfiguration overhead of
dynamically reconfigurable hardware,” Proc. Conference on Design,
Automation and Test in Europe (DATE), pp.106–111, 2005.

[16] P.M. Heysters, G.J.M. Smit, and E. Molenkamp, “Montium —
Balancing between energy-efficiency, flexibility and performance,”
Proc. International Conference on Engineering of Reconfigurable
Systems and Algorithms (ERSA’03), pp.235–241, 2003.

[17] S. Jung and T.G. Kim, “An operation and interconnection sharing
algorithm for partially reconfigurable architectures,” Proc. Interna-
tional Conference on Engineering of Reconfigurable Systems and
Algorithms (ERSA’05), pp.163–174, 2005.

[18] S.S. Muchnick, Advanced Compiler Design and Implementation,
Morgan Kaufmann, 1998.

[19] V. Baumgarte, G. Ehlers, F. May, A. Nückel, M. Vorbach, and M.
Weinhardt, “PACT XPP — A self-reconfigurable data processing
architecture,” J. Supercomput., vol.26, no.2, pp.167–184, 2003.

[20] K. Compton and S. Hauck, “Reconfigurable computing: A survey of
systems and software,” ACM Comput. Surv., vol.34, no.2, pp.171–
210, 2002.

[21] H. Singh, M.-H. Lee, G. Lu, N. Bagherzadeh, F.J. Kurdahi, and
E.M.C. Filho, “MorphoSys: An integrated reconfigurable system for
data-parallel and computation-intensive applications,” IEEE Trans.
on Computer, vol.49, no.5, pp.465–481, 2000.

[22] R. Barua, W. Lee, S. Arnarasinghe, and A. Agarwal, “Compiler sup-
port for scalable and efficient memory systems,” IEEE Trans. on
Computer, vol.50, no.11, pp.1234–1247, 2001.

[23] S.C. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R.
Taylor, “PipeRench: A reconfigurable architecture and compiler,”
Computer, vol.33, no.4, pp.70–77, 2000.

[24] T. Callahan, J. Hauser, and J. Wawrzynek, “The Garp architecture
and C compiler,” Computer, vol.33, no.4, pp.62–69, 2000.

[25] SUIF Compiler System, The SUIF Group.
http://suif.stanford.edu



KIM et al.: TEMPORAL PARTITIONING TO AMORTIZE RECONFIGURATION OVERHEAD
1985

Jinhwan Kim received the B.S. degree in
Electronic Engineering with Computer Science
minor from Korea Advanced Institute of Sci-
ence and Technology (KAIST) in 2000, M.S.
degree in EECS from KAIST in 2002. He is cur-
rently a Ph.D. student in KAIST. His research
interests include discrete event systems mod-
eling/simulation, processor design, co-design
methodology and compiler optimization tech-
niques for various architectures.

Jeonghun Cho received the B.S. degree
in Electrical Engineering from Korea Advanced
Institute of Science and Technology (KAIST) in
1996, M.S. degree and Ph.D. degree in EECS
from KAIST in 1998 and 2003. He was with the
MCU Application Team of Hynix Semiconduc-
tors, Korea, where he worked on C Compiler de-
velopment for 8-bit microprocessors. He is cur-
rently as an assistant professor in the School of
EECS at the Kyungpook National University in
Korea. His research interest includes optimized

compiler, operating system, and design automation for embedded systems
and reconfigurable computing. He is a member of ACM and IEEE.

Tag Gon Kim received his Ph.D. in com-
puter engineering with specialization in systems
modeling/simulation from University of Ari-
zona, Tucson, AZ, 1988. He was a Full-time In-
structor at Communication Engineering Depart-
ment of Bookyung National University, Pusan,
Korea between 1980 and 1983, and an Assistant
Professor at Electrical and Computer Engineer-
ing at University of Kansas, Lawrence, Kansas,
U.S.A. from 1989 to 1991. He joined in Elec-
trical Engineering Department of KAIST, Dae-

jeon, Korea in Fall, 1991 as an Assistant Professor and has been a Full
Professor at EECS Department since Fall, 1998. His research interests in-
clude methodological aspects of systems modeling simulation, analysis of
computer/communication networks, and development of simulation envi-
ronments. He has published more than 150 papers on systems modeling,
simulation and analysis in international journals/conference proceedings.
He is a co-author (with B.P. Zeigler and H. Praehofer) of Theory of Model-
ing and Simulation (2nd ed.), Academic Press, 2000. He was the Editor-in-
Chief of SIMULATION: Trans. of SCS published by Society for Computer
Simulation International (SCS). He is a senior member of IEEE and SCS
and a member of Eta Kappa Nu.


