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ABSTRACT

This paper presents a real time simulation framework in which simulation models are specified by the real
time DEVS(RT-DEVS) formalism. Here, real time simulation denotes the framework’s ability to interact with
a surrounding environment, such as software components, hardware components or human operators. Typical
examples are man-in-the-loop simulation such as a flight simulation or simulation of a controller with real
time constraints. In such simulation, a simulator must handle external events in a timeliness manner. We pro-
pose a real time, interactive simulation methodology, which concurrently executes RT-DEVS models along
with its environment in a time selective manner. The proposed simulation methodology employs an event
driven scheduling policy to meet timing requirement of RT-DEVS models. We developed a real time simula-
tion kernel that supports the proposed simulation methodology. A simple example of real time, interactive
simulation demonstrates effectiveness of the proposed methodology and the developed environment.

1. INTRODUCTION

Discrete-event simulation is widely used not only to predict performance but also to analyze behavior, of
complex systems. Real time, discrete event simulation is a means to verify a real time system in which a
simulation model may interact with a surrounding environment, such as software components, hardware com-
ponents or human operators. In such simulation, a simulator must handle external events from its environment
in a timeliness manner. Simulation methodologies developed in non-interactive simulation, such as perform-
ance simulation, do not have such capabilities in event processing. This is because such methodologies em-
ploy virtual(logical) time, not real(physical) time, in event scheduling and processing.

Real time simulation involves simulation models that act as a real time program with timing constraints. Satis-
fying the timing constraints is very difficult due to the lack of explicit specification of such constraints in the
program. To solve this problem, real time objects have been proposed [MT90, ITM90, AS91, KK94]. A real
time object is a basic object that has a set of operations with timing constraints and threads, each of which is
an execution unit. The main reason to define the object models is to encapsulate not only data but also timing.
Mercer [MT90] presented the object model used in the ARTS real time kernel, Ishikawa [ITM90, ITM92]
proposed RTC++, a real time extension of C++, and defined a real time object RTO which has two types of
threads, slave and master. Attoui[AS91] proposed another real time object model MO2. MO?2 is an object-
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oriented model which integrates the features of both DBMS and real time systems. Kim and Kopetz [KK94,
Kim94, Kim97] suggested RTO.k (also called time-triggered RT-object) model. RTO.k extends the conven-
tional object models in four ways: deadline for each execution of a method, separation of time-triggered
methods and message-triggered methods, maximum validity duration of real time data, and basic concurrency
constraint. They suggested execution engine model of the DREAM kernel, and implemented them [KK94].
Lee and Fishwick [LK98, LK99] suggest a real time simulation methodology called OOPM/RT, which is a
multi-modeling methodology based on the idea of selecting the appropriate model among multiple model
types through trading structural information for faster runtime while minimizing the loss of behavioral infor-
mation. The selected optimal model guarantees delivering simulation results by the given amount of time.
Garvey and Lesser proposed the Design-to-Time method [GHL93, GL93], which assumes that one has multi-
ple methods for given tasks and tries to find a solution to a problem that uses all available resources to maxi-
mize solution quality within available time. They present an algorithm for finding an optimal solution to a real
time problem under a task tree graph and task relationships. The algorithm generates all set of methods that
can solve the problem and prunes those superseded by other sets of methods that generate greater or equal
quality in equal or less time. In some methods [LK98, LK99, GHL93, GL93], the timing requirements are not
specified by the simulation model, which are not applicable for real time simulation of timed discrete event
models. Other methods [ITM90, AS91, KK94] can specify the timing requirement in model specification.
However, they lack sound formalism in model specification, thus remaining a timing analysis as a difficult
problem.

We propose a real time, interactive simulation methodology for combined discrete event models and a sur-
rounding environment. Within the methodology, a real time system is modeled by the RT-DEVS formalism
[THong97], a real time extension of Zeigler’s DEVS formalism [Zei84]; interactive components are used as
they are. The methodology concurrently executes real time DEVS (RT-DEVS) models and its environment in
a time selective manner. RT-DEVS model execution environment is implemented to execute RT-DEVS mod-
els based on the proposed simulation methodology.

This paper is organized as follows. Section 2 presents the overview of our real time simulation framework.
Section 3 describes the RT-DEVS formalism used in modeling of real time subsystems. The proposed meth-
odology for real time simulation and its execution environment are given in section 4. Section 5 presents the
application programming interfaces. An example system is illustrated in section 6. Conclusion is given in sec-
tion 7.

2. PROPOSED REAL TIME SIMULATION METHODOLOGY

In this section, we discuss general characteristics about real-time simulation and the simulation procedure of
our framework.

<<Insert Figure | here >>

Real-time simulation is accepted in many fields, such as training and control systems. In most cases, the term
real time, when it comes to simulation, denotes that advancement of simulation time must occur in the real
world time. This is a critical issue, since the simulation model represents an actual dynamic process as it oc-
curs. Therefore, the real-time simulation framework must provide a means for simulation models to evolve



based on real world physical time. Based on the above definition, a real-time simulation of timed models is an
evaluation process of models’ timing behavior as physical time advances. In interactive, real-time simulation,
there also exist messages between simulation models and real-world processes. This imposes an increased
degree of complexity. To preserve the causality of simulation model, the simulator should process messages
between models and real world processes on time. This is because a proper management of events between
simulation models and real world processes is critical to evaluate a model’s causality under real-time simula-
tion. In our real time simulation framework, a target system is modeled by the RT-DEVS formalism. We im-
plemented a real time kernel for RT-DEVS models, which employs an event driven scheduling policy to meet
timing requirement of RT-DEVS simulation models.

<<Insert Figure 2 here >>

A typical simulation procedure within the framework is depicted in Figure 2. First of all, a target system is
modeled with the RT-DEVS formalism that will be discussed in the next section. A modeler specifies atomic
and coupled RT-DEVS models for the system to be modeled. If simulation models have interactions with ex-
ternal processes, IEE(Interacting External Environment) model is created. IEE represents the interacting ex-
ternal environment. The modeling step is followed by the scheduling feasibility analysis phase. For the analy-
sis, a schedulability test graph is first extracted from the model and corresponding transient graphs are gener-
ated. Then, scheduling feasibility is tested on each transient graph. If the given RT-DEVS models are not fea-
sible for real time execution in simulation, the modeler calibrates the models to satisfy the real time schedul-
ing. In this step, a modeler often divides a time consuming activity function into smaller ones and modifies
corresponding atomic models for the proposed real time scheduling to be feasible. Details of the scheduling
feasibility analysis are given in [KCLO1]. After the given simulation models pass the scheduling feasibility
analysis, the real time scheduler for real time simulation now simulates them as follows. First, the scheduler
flattens all coupled models in a recursive manner to minimize communication delays between component
models. Then, it spawns model threads for corresponding atomic models and establishes communication
channels between them. When real time simulation is done without any run-time exception due to timing vio-
lation, the modeler analyzes the simulation result. We now explain our real time scheduling algorithm for RT-
DEVS models.

3. RT-DEVS FORMALISM

The real time DEVS formalism is an extension of the DEVS formalism for real time systems simulation. An
atomic model in RT-DEVS formalism [JHong97], RTAM, is defined as:

RTAM =< X, S, Y, Ot On A, ta, Y, A>
, where
X : a set of external input event types
S : a sequential state set
Y : an output set
Oni - O X X > S, an external transition function, where Q is the total state set of M ={(s,e) | s O S and 0<
e < 1a(S)|max }
Op - Sx1I +Qw - S, an internal transition function
A:Sx I, - Y, an output function



where I % is the non-negative integer numbers with o adjoined. Note that / *y., denotes the set of time in
terms of ticks that a model stays in a certain state.

ta:S - I"gnx Iy, atime interval function,

Note that a time advance, ta(s), for RT-DEVS is given by an interval ta(s)|ym < ta(s) < ta(s)|nax-

Y: S - A, an activity mapping function

A : a set of activities 4 = {a| a) O I" gwand t(a) < tal,,,} 0 O

The RT-DEVS formalism replaces virtual time advance in the DEVS formalism[Zei84] by real time advance.
The actual advance of simulation time is the sum of the real execution time of activity function and the time
residing in the blocked state of the corresponding atomic model. A restriction of the specification is that a
model cannot receive events when its current state executes an activity function associated with it.

Note that the RT-DEVS formalism defines a set of activities associated with a state, which is not defined in
the DEVS formalism. Each activity is an abstraction of a task in a real system to be modeled. Within the RT-
DEVS formalism, execution time for the task is specified by the time advance function defined for the state.
Note also that a time advance, ta(s), for RT-DEVS is given by an interval ta(s)|min < fa(s) < ta(s)|nax of integers,
which is a real number in DEVS. A reason for such interval time advance is that a RT-DEVS simulator checks
a specified time advance of a RT-DEVS model against a real time clock within the simulator during simula-
tion. If the clock falls in the scheduled time interval correctness of the schedule would be verified. Integers in
time advance specify computation time of an activity in terms of ticks generated by an underlying computing
system. Such specification enables a modeler to specify the computation time adaptable to the implemented
computing system.

A real time DEVS coupled model connects basic real time DEVS models together in order to form a new
model. As in the DEVS formalism, a set of component models makes up a new coupled model. The real time
coupled DEVS model, RTCM, is defined as:

RTCM = < D, {M}}, {1}, {Z,;} >
, where
D, I, Z, : same as the original
M; : a component basic real time DEVS model

A coupled model within the RT-DEVS formalism is defined the same way as in the original DEVS formal-
ism[Zei84] with an exception. The exception is that there is no SELECT function in RT-DEVS, which has
been defined in the DEVS formalism to break ties for simultaneous events scheduling. This is because such
simultaneous events cannot be happened in a real time simulation environment. In real time simulation with
single processor, only one event at a time can be physically processed even if more than one event occurred
from the external environment.

4. REAL TIME SIMULATION FRAMEWORK

In this section, the proposed real time simulation framework is presented in detail. First, we discuss our real
time scheduling policy for RT-DEVS models.



4.1. EVENT DRIVEN SCHEDULING

Our real time simulation environment supports communication among RT-DEVS models and interactions
with surrounding environment. In real time simulation, simulation models must evolve according to real
world time. This is critical, because real world processes have no connection with simulation time. The only
way to synchronize the time of a simulation model with that of a real world process is to use real world time
as simulation time. By prioritizing the execution order of simulation models, the scheduler makes state transi-
tions of simulation models occurred based on real world time. Such prioritizing is needed to prevent unac-
ceptable delay, thus violating timing requirement of every simulation model. In the RT-DEVS formalism, the
next scheduling time of a model is associated with ty, which is given as the time advance value at the latest
scheduling time. A RT-DEVS model with smaller ty has higher priority and events are processed with the
highest priority under our scheduling policy. One important observation is that ty of a RT-DEVS model is
dynamically changed during simulation execution. More specifically, atomic models are supposed to update
their ty whenever they receive internal or external events. When a model receives an event, the real time
model scheduler sets the execution priority of that model to the highest one. This is because the corresponding
model needs to make urgent rescheduling, which updates ty. Therefore, priority reassignment is made when-
ever a model receives an event. That is why we refer our scheduling algorithm to as event driven scheduling
algorithm. Table | summarizes the characteristics of scheduling algorithm.

Table 1. Characteristics of event driven scheduling

Event Driven Scheduling
Task RTAM =< X, S, Y, Ouxi, O A ta, 4, A> Aperiodic event driven task
Goal of Scheduling Preservation of Causality
Factor of Priority Assignment | External/Internal events
Dependencies among tasks Input/output dependencies influence the execution order

4.2. REAL TIME SIMULATION ENVIRONMENT

The RT-DEVS execution environment employs the event driven scheduling discussed in the previous section.
Before it is implemented, a set of design goals is constructed. Such goals determine the internal structure of
the RT-DEVS execution environment.

Several problems are to be considered to bridge the gap between simulation and execution. First, event proc-
essing time should be counted in real time execution. Thus, the underlying time base is changed to time inter-
vals, and a couple of constraints are imposed on the modeler. These constraints are related to real time execu-
tion. To reduce a burden of constraints, we provide a scheduling feasibility analysis scheme. The schedulabil-
ity criterion checks the feasibility of real time execution of given models under our real time execution envi-
ronment. Second, timing constraints of simulation models must be satisfied. Guaranteeing timing behavior
requires the system to be predictable. It is also desirable that the system attains a high degree of utilization
while satisfying timing constraints of simulation models. Therefore, a predictable execution mechanism needs
to be embedded in simulation engine. We implemented a real time kernel as a simulation engine, which sup-
ports scheduling facilities on the upper layer of the kernel. Our real time kernel has 10 millisecond clock
granularity and context switching time of 5 milliseconds under Pentium IT1 266Mhz PC.



Portability is another goal of our execution environment. It is closely related to extensibility. Extensibility
allows our execution environment to be easily enhanced, whereas portability enables it to be ported to a ma-
chine based on a different processor or configuration. Developing a portable software system that is easy to
port is similar to writing portable code with certain guidelines. First, for the most part, source code must be
written in prevailing language using portable library. Second, it is important to minimize and isolate, wher-
ever possible, the part of code that interacts directly with an underlying platform. The RT-DEVS execution
environment is largely written in the C and C++ languages that are most widely used programming language.
Therefore, it can be easily ported to various platforms having any ANSI C++ compiler. However, some part of
RT-DEVS micro kernel is hardware dependent, which is for context switching and synchronization. To im-
prove its portability, we designed a layered architecture to isolate the hardware dependent part from the hard-
ware independent one.

<<Insert Figure 3 here >>

The RT-DEVS execution environment has a layered architecture as shown in Figure 3. Each layer has its own
functions based on which upper layers are built. As an execution engine for RT-DEVS atomic models, the RT-
DEVS kernel was designed to be flexible linkage between RT-DEVS models and various hardware platforms.
This is done by supporting real time threads with various activation and synchronization requirements. It also
supports real time clock management, interrupt handling routines, and thread communication facilities. Gen-
erally, a target system consists of multiple models. Managing the execution of competing, real time model
threads is the main purpose of RT-DEVS micro kernel. The RT-DEVS micro kernel provides basic services
based on which a set of model threads are executed concurrently.

<< Insert Figure 4 here >>

The lower layer in the micro kernel has a thread context-switching routine and a real time alarm clock man-
agement routine. The low level context-switching routine provides facilities that can be used when the thread
support layer creates a model thread or makes model thread switching. Model thread switching occurs when
the model scheduler calls the priority function or sends a message. Interrupt handlers also use these facilities
because they can trigger model thread switching. A thread is always in one of five states: executing, ready,
suspended, or finished as depicted in Figure 4. When a thread is in suspended state, it is in blocked state while
waiting for the completion of a service request. This happens when a model thread sends a message to other
model thread. When the request is complete, the thread is moved to the ready state. When a thread is in fin-
ished state, it finished its job and returned from the entry routine. The real time alarm clock routine supplies
facilities that produce current time and supports timer services. Timer services require a periodic timer inter-
rupt from the hardware. Each thread has a built-in timer. It serves thread sleep requests and suspension time-
outs in service call. A model thread relies on the built-in timer, when it executes an internal transition function.

An interrupt is a mechanism to provide instant response to an external event. When an interrupt occurs, the
processor suspends the current executing thread and transfers control to the appropriate interrupt service rou-
tine (ISR). Interrupt handling often produces the data integrity problem, when ISRs need access to kernel ser-
vices that require protection of data structures from simultaneous access. The simplest solution is to disable
interrupts for the duration of the service. Because fast interrupt response is very important in real time sys-
tems, disabling interrupts to protect data structures is not desirable. The RT-DEVS micro kernel splits ISRs



into low and high-level components to solve the protection problem. While the low-level ISR executes in the
context of a task it interrupted, the high-level ISR executes as an independent task. Therefore, the high-level
ISR can be blocked temporarily to prevent its access to the kernel data structure that is already being accessed.

In our real time simulation environment, a model has its own input ports where it receives messages from
surrounding environments as well as other models. These input ports consist of communication channels,
which use communication services provided by the kernel. The RT-DEVS kernel provides queues, pipes, and
mailboxes for communication purposes. The communication channel provides both synchronous mode and
asynchronous mode transmission. In synchronous mode, a model is suspended until its message transmission
is completed. In asynchronous mode, a model continues its execution after message transmission. Synchroni-
zation services provide access to kernel semaphores, event flags, and signals. Synchronization services are
used when access to a resource must be controlled to ensure integrity of the resource. They are used to gain
access to these controlled resources in various part of the kernel.

<<Insert Figure 5 here >>

The model scheduler executes each RT-DEVS models as a real time thread by using facilities provided by the
thread support layer. The scheduler dynamically changes priorities of RT-DEVS models based on the pro-
posed priority assignment policy. In this sense, the micro kernel can be viewed as a kernel-thread execution
engine and the scheduler as a model execution engine. When simulation models in the RT-DEVS formalism
are given, the model scheduler flattens all coupled models into atomic models to minimize communication
delays. After communication channels among atomic models are established, real time simulation is initiated.
Interactions between the model scheduler and the micro kernel will be illustrated in the next section.

4.3. MICRO-KERNEL SUPPORTED CONCURRENT MODEL EXECUTION
<< Insert Figure 6 here >>

The internal structure of a model thread is depicted in Figure 6. The model scheduler creates a thread for each
simulation model after flattening all coupled models. A model thread receives messages from other models
and processes in a surrounding environment. When it receives an external event, it is inserted into the event
queue, which makes the model to execute CME:when_rcv_(x,t) procedure. When the internal clock alarms, a
model thread execute CME:when_rcv_(*,t) procedure. External events are passed through communication
facilities.

<<Insert Figure 7 here >>

Figure 7 shows interaction between the scheduler and the micro kernel. Each atomic model spawns its own
thread to execute its characteristic functions concurrently with other model threads associated with corre-
sponding atomic models. The real time scheduler performs the Concurrent Model Execution algorithm to be
explained later. The algorithm changes an execution priority of each model by using the priority function P
with argument fy|nax Of each model, which is notified to the micro kernel. Then, the kernel-thread execution
engine of the micro kernel switches CPU to a model thread based on the priority. By this way, a model with
the highest priority is executed the first. As shown in Figure 5, each model has an associated independent pro-



gram, which concurrently executes internal transition and external transition of the model. Such an execution
is different from that of conventional DEVS simulators in which the two transitions are executed in a sequen-
tial manner.

We now explain the program associated with each atomic RT-DEVS model, which consists of a main program
CME:main() and two concurrent model execution algorithms, CME:when_rcv_(*,t) and
CME:when_rcv_(x,t), as abstract simulators.

<<Insert Figure 8 here >>

The algorithm when_rcv_(*, t) handles an internal event (*, t) which notifies that a scheduled time t comes.
The CME performs this procedure whenever an internal time out occurs without any interruption of external
events. First, the CME checks the validity of internal timeout. Lines 3 to 7 of the algorithm correspond to the
function calls sequence [A, J,, ta]. After updating its time advance value, it modifies its execution priority
based on that by calling priority function P, which also updates priorities of other simulation models based on
current t;, value. RT-DEVS model with smaller dfy (= ty}.ax - 1) value is given higher execution priority.

The algorithm when_recv_(x, t) handles an external event (x, t). The CME performs this procedure whenever
an external event is received. As in the previous algorithm, it first checks the validity of the external event’s
generation time. Lines 3 to 6 of the algorithm correspond to the function calls sequence [J,,, ta]. As before, it
modifies its execution priority based on updated dfy value by calling priority function P.

Whenever the priority function is called, the kernel-thread engine switches CPU to the model thread with
highest priority.(Line 8 in Figure 8 (a) and Line 7 in Figure 8 (b)) A context switching is also occurred, when
a model performs output function.(Line 4 in Figure 8 (a)) This is because a model that has a pending external
event is given highest priority. Therefore, a model with pending external event gets the CPU.

The algorithm main() shows the main routine of the CME. Each atomic model waits for an external event
until an internal timeout occurs. If an external event is occurred before an internal timeout expires, it proceeds
when_recv_(x,t). If an internal time expires without external event, it proceeds when_rcv_(*,t) and sets new
internal timeout.

To synchronize time between atomic models and an external environment, the model scheduler suspends an
atomic model after finishing its activity until the time specified by its time advance function. If an external
event occurs during that interval, the scheduler wakes up the corresponding atomic model.

The execution flow of our simulation framework is depicted in Figure 9. At first, user provides simulation
models and coupling schemes between them. Then, the model scheduler flattens all coupled models so that
the target system consists of atomic models only. It now creates corresponding model threads and schedules
them under the event driven scheduling policy.

<<Insert Figure 9 here >>

5.  APPLICATION PROGRAMMING INTERFACE



In this section, we explain the application programming interfaces that are used in the specification of RT-
DEVS models. Before explaining the APIs of RT-DEVS execution environment, it worthwhile to summarize
its conceptual basis. Table 2 shows the tuples required for simulation and execution. For a RT-DEVS atomic
model, five tuples, from X to A are commonly required. A time interval function fa is used for execution. The
semantics of an external transition function g, is slightly different only in the maximum time bound of an
external event. An activity mapping function (/' and a set of activities 4 are newly devised for execution.

Table 2. Comparison of atomic model in DEVS/RT-DEVS formalism

Atomic DEVS RT-DEVS
model

X An input event set

Y An output event set

S A states set

dnt )

5ext QXX”Sa QXX”Sa

O={(s,e) |sOSand O< e <ta(s)} O={(s.e)|s OSand 0< e < ta(s)|max }

ta S > R0 S o IMowXx 10

w S 4

4 A= {alt(a) O I'ymand H(a) < tall,,} O O

Table 3 summarizes the programming interfaces of RT-DEVS for modelers. For some tuples such as X and M,
there are operators as well as functions. Operators are more convenient specification method to modeler. X, Y,
S, M, and C objects correspond to X, Y, S, M; and I/Z;; defined in the RT-DEVS formalism, respectively. To
define the elements of a set, the = and , operators are used. For example, the statement X =“x17, “x2” means
that there are two input ports, named x1 and x2. The characteristic functions of the RT-DEVS formalisms
have a one-to-one correspondence with implementation. For example, an external function is defined as J,,; :
OxX - S, where Q ={(s,e) | s OS and 0< e < ta(s)|max }- Thus, the API of the external function is void
extTransfn (Time e, XPortSet &X). The mapping of two parameters, ¢ and X, is straightforward. However,
there is no parameter for a state set S, Intuitively, atomic models and coupled models are mapped into respec-
tive classes. Then, a state set can be thought of as a member variable in one such class. Although a state set
could be given as a parameter of the function, our approach simplifies use of APIs.

Table 3. Application programming interfaces of RT-DEVS



Atomic Operator Function
model
X X =4x17, “x2” addInports(2, “x1”, “x2”)
X[“x1”] X.from(“x1”)
X[*x17]>>v v = (Type*)&X.receive(“x1”)
Y Y =“y1” addOutport(“y1”)
Y[“y1”] << *v Y.send(“Y17, *v)
S S = new State(“phase”, phase) addState(new State(“phase”, phase))
phase = IDLE phase = IDLE
Ot void extTransfn(Time e, XPortSet& X)
Ot void intTransfn(void)
A void outputfn(YPortSet& Y)
ta Timelnternval timelntervalfn(void)

A void activityfn(Time e, XPortSet& X)

Coupled Operator Function
model
X X =x1”, “x2” addInports(2, “x17, “x2”)
Y Y =“yl” addOutport(“y1”)
D, M, M =new M1(“M1”), M2 addModels(2, new M1(“M1”), M2)
1,7, C = X[*X17] >> M[“M1”].X[“x]1”]) addCoupling(this, “x1”, M[“M17], “x1”)

6. EXPERIMENT: ALTERNATING BIT PROTOCOL

To show the RT-DEVS based simulation within the proposed framework, design of Alternating Bit Protocol
(ABP) is to be considered. ABP is a communication protocol for secure transmission of the messages from a
source to a destination. Generally the existing communication media is not perfect. Thus, there always exists
such possibility that messages generated from the sender might be lost, duplicated or corrupted before arriv-
ing to the destination. Thus a secure communication protocol is needed to ensure a correct transfer of the mes-
sages between the two entities. This section exemplifies implementation of ABP. We demonstrate real time,
interactive simulation by executing simulation models interacting with a software process in a remote host.
Correctness of our real time framework is verified by observing communication between simulation models
and remote software process in real time.

6.1. INFORMAL MODEL DESCRIPTION AND RT-DEVS MODELING
<< Insert Figure 10 here >>

Figure 10 shows an overall system model of ABP. The Sender and the Receiver exchange messages through
local area network(LAN). The Sender delivers a message, and then the Receiver acknowledges it. When a
message is sent, Receiver process responds in 20 ticks. To determine whether the message is lost or not, both
the Sender and the Receiver are notified by a timeout event if no message is arrived in a specified time inter-
val. Once a timeout event is notified, retransmission is made assuming that a message transmitted previously
has been lost. Messages are sent tagged with a bit 0 and 1 alternatively, and also the acknowledgements are
constituted of the bits. The Receiver is implemented as a real software process in a remote host.



Gen/Sender/Timer models are implemented as RT-DEVS model in our real time simulation framework. The
model-environment interface contains a driver that directly communicates with network interface card and
forwards messages bi-directionally. The Sender sends a message using functions provided by the network
card driver and receives a message that the interrupt handler in the driver delivers.

<< Insert Figure 11 here >>

Figure 11 shows RT-EVS models for scheduling feasibility analysis. IEE represents only I/O behavior of a
remote process by hiding details of the process. Therefore, IEE has no activity functions. When the schedul-
ing feasibility is analyzed, external processes are not directly concerned. Instead, IEE is concerned on behalf
of them.

Each RT-DEVS model has the following state diagram. The notation ?event represents receiving an event
and /event represents sending an event. Time interval @(ta|ym, falnax) is given in ticks, where one tick is 100
milliseconds.

<<Insert Figure 12 here >>

Initially, Sender waits for a message from Gen(erator) at accept( state. Upon receiving a message, it moves to
send( state where it performs activity function packet, which makes a message packet with control bit 0. Then,
it transmits the message packet and moves to wait0 state. In wait( state, it waits for an ack(nowledge) mes-
sage with control bit O from the Receiver. Upon receiving an ack message with control bit 0, it moves to ack0
state7 where it sends done message to Gen. When an ack message does not come in due time or an ack mes-
sage with control bit 1 is received, it moves to resend( state, where it retransmit the message. Sender repeats
this sequence with alternating control bit 0/1.

<< Insert Figure 13 here >>

Gen has an initial send state where it generates a data with an activity function. It sends the message to Sender
and moves to wait state. In wait state, it waits for done message. Upon receiving done message, it generates a
new message. Gen repeats this sequence. Timer waits for a message in its initial wait state. Upon receiving a
message, it moves to alarm state. Then, it expires and sends timeout message.

6.2. SCHEDULING FEASIBILITY

<<Insert Figure 14 here >>

<<Insert Figure 15 here >>

Figure 14 shows the state transition diagram of the given system. To check the scheduling feasibility of given
simulation models, we build a schedulability test graph from Figure 14. We assume that processing time for
each activity function is 5 ticks at most. The schedulability test graph and transient graphs are depicted in

Figure 15. After applying the scheduling feasibility criterion to all transient graphs, we conclude that the
given simulation model can be simulated in real time under our real time simulation environment.



6.3. RT-DEVS MODEL IMPLEMENTATION

When a modeler creates a real time atomic model, he/she defines a new model class that inherits from At-
omicModel class. To show one to one correspondence between a model specification and an implementation
code, the Sender model specification and its implementation are presented.

Formal definition of Sender model depicted in Figure 12 is as follows.

<<Insert Figure 16 here >>

The following code is a part of C++ code that corresponds to 9d,,,.

<<Insert Figure 17 here >>

Line 7, 8 describe the external state transition at of J,,-(1) of Figure 16. And Line 9, 10 describe d..~(2) of
Figure 16. The C++ code is written with APIs of RT-DEVS shown in Table 3.

The following code is a part of C++ code that corresponds to J,,. A, ta, .
<< Insert Figure 18 here >>

As shown above, a modeler defines member functions that have one to one correspondence with the formal
definition of a model.

6.4. REALTIME EXECUTION = REAL TIME SIMULATION

The RT-DEVS simulation framework supports interaction between RT-DEVS models and an external envi-
ronment, which can be either hardware, software or a human operator. The presented experiment demon-
strates this capability by implementing Receiver model as a software process in a remote host. Trans/Ack
models originally represent a LAN environment. Therefore, the LAN environment is used as it is.
Gen/Sender/Timer models are implemented as RT-DEVS models in our real time simulation framework.

We verified correctness of our real time simulator by observing communication between Sender and Receiver
in real time. Figure 19 shows the state trajectories of the target system in real time simulation. The time at
which event occurs is bounded within the time intervals specified in RT-DEVS models. This shows that the
event time measured during real time simulation coincides with the time interval in model specification.
Therefore, the correctness of real time simulation is confirmed.

<<Insert Figure 19 here >>

7. CONCLUSION

We proposed a real time simulation methodology by extending the DEVS formalism and developed an asso-



ciated simulation environment by employing concurrent execution of RT-DEVS models. The RT-DEVS simu-
lation methodology and the simulation environment provide the uniform and flexible representation of real
time systems. In the proposed real time simulation framework, multiple models are scheduled based on events
they received. To meet timing constraints during execution of simulation models, a real time simulation kernel
for RT-DEVS models is implemented and it employs an event-driven scheduling policy to execute RT-DEVS
models concurrently. The simulation kernel has layered architecture to provide portability and guarantees pre-
dictable execution time. The kernel has 10 millisecond clock granularity and context switching time of 5 mil-
liseconds under Pentium II 266Mhz PC. A simple example of real time, interactive simulation demonstrated
an overall procedure of the proposed real time simulation methodology. The correctness of our simulation
framework is verified by observing events between simulation models and external real world process.

Our current work is to extend the analysis method that checks upon the scheduling feasibility of given simula-
tion models. The limitation of the current methodology is that only simulation models with deterministic be-
havior in event time can be analyzed for the scheduling feasibility. Analysis of non-deterministic event time
models is much harder and remains as future work.
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1. CME:when_rcv_(*, t):
2. iftNlmin <t< tNlmax then

3. y = A(s);
4. send message(y, t) to associated ports;
5. § 1= Ot (5);
6. t, =t
7. ty 1= [t + ta(S)hnins t+ ta(S) lnaxl;
8. P(tNlmax)
9. W(s)
10. else
11. error;
12. end if
(a)

1. CME:when_rcv_(x, t):
2. ifty <t < tyfpax then

el =t—t.;

4 S 1= Ouyt (5,€,X);

5 L=t

6. ty 1= [ty + ta(S)hnins t+ ta(s) lnaxl;
7. P(tN |max)
8

9

1

1

(98]

Y(s)
else
0. error;
1. endif



(b)

1. CME:main():

2. s=5s /* initialize */

3.ty = [ta(50) lmins ta(S0) knaxl

4. concur_forever for each RT-DEVS model
/* main loop */

5 wait for an event

6 if an external event then

7. when_rcv_(x, t);

8. else if an internal time out event then

9. when_rcv_(*, t);

10. end if

11. end concur_forever

(©)

Figure 8. Concurrent model execution(CME) algorithms
(a) CME: when_rcv(*, t)
(b) CME: when_rcv(x, t)
(c) CME: main()
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Figure 9. Execution flow of RT-DEVS models simulation
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X = { msg, ack0, ackl, timeout }
Y = { done, send0, send1 }
S={ ACCEPTO0, SENDO, WAIT0, RESENDO, ACK0, ACCEPT1, SEND1, WAIT1, RESENDI, ACK1 }

O Q%X - S O S - S

ACCEPTO x e* x msg — SENDO Aur~(1) SENDO - WAITO O (1)
ACCEPTI x e* x msg — SENDI A(2) RESENDO —. WAIT0 9n~(2)
WAITO x e* x ack0 — ACKO Ax-(3) ACKO - ACCEPT1 0 (3)
WAIT1 x e* x ack0 — RESENDI O(4) SENDI1 - WAITI O (4)
WAITO x e* x ack] — RESENDO Ax(5) RESENDI - WAITI O (5)
WAIT1 x e* x ackl — ACKI 0.x~(6) ACK1 - ACCEPTO 0n(6)

where, e* = { e | 0< e < ta(s)|max }

A:SoY ta:S > Iowx 1 oo
SENDO - send0 A-(1) SENDO - (9, 11) ta-(1)
SENDI - sendl A-(2) SENDI - (9, 11) ta-(2)
RESENDO - send0 A-(3) RESENDO - (9, 11) ta-(3)
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where, 4 = { packet0, packetl }

Figure 16. RT-DEVS specification of Sender

1. void

2. Sender::extTransfn(Time e, XPortSet& X)

3.4

4.  if(X["msg"])

5. H

6. msg = (String&)X.receive();

7 if (phase == Sender::ACCEPTO0) /I O~(1) of Figure 16.
8 phase = Sender::SENDO;

9. else if (phase == Sender::ACCEPT1) /I 0,~(2) of Figure 16.
10. phase = Sender::SENDI;

1. }
12. // omitted



13.}

Figure 17. C++ implementation of &, of Sender

void
Sender::intTransfn(void)

f
X

switch (phase)

{
Sender::SENDO:

phase = Sender:: WAITO;
return;
// omitted

}

Timelnterval

Sender::timelntervalfn(void)

f
R

switch (phase)

f
R

case Sender::SENDO:
case Sender::SEND1:

return Timelnterval(9, 11);

// omitted

!
s

-

Figure 18. C++ implementation of J,,. A, ta,  of Sender

/I Op~(1) of Figure 16.
Sender::RESENDO: // §,,~(2) of Figure 16.

/I ta-(1) of Figure 16.
/] ta-(2) of Figure 16.
case Sender::RESENDO: // ta-(2) of Figure 16.
case Sender::RESEND1: // ta-(2) of Figure 16.

void

Sender::outputfn(YPortSet& Y)

f
R

switch (phase)

{

case Sender::SENDO: // A-(1) of Figure 16.
case Sender::SENDI: // A-(2) of Figure 16.

Y["send"] << msg;

break;
// omitted
)
)
void

Sender::activitytn(void)

f
R

-

switch (phase)

f
R

-

case Sender::SENDO: // ¢+(1) of Figure 16.
:packet('0', msg);
break;

case Sender::SENDI1: // ¢+(2) of Figure 16.
:packet('1', msg);
break;
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Figure 19. Real time simulation results





