
Layered Approach to Development of OO War Game Models
Using DEVS Framework

Chang Ho Sung*, Su-Youn Hong**, and Tag Gon Kim***
Department of EECS

KAIST
373-1 Kusong-dong, Yusong-gu

Taejeon, Korea 305-701
Tel: +82-42-869-3454
Fax: +82-42-869-8054

chsung@smslab.kaist.ac.kr*; syhong@smslab.kaist.ac.kr**; tkim@ee.kaist.ac.kr***

Keywords: Layered Structure, War Game, Object Oriented
Modeling, DEVS

The DEVS framework of discrete event modeling is known
to be compatible with the object-oriented (OO) world view.
This paper proposes a methodology for the OO development
of war game models within the framework. The
methodology develops war game models at two layers: a
discrete event system (DES) layer and an object model
(OM) layer. Within the methodology the DES layer
represents abstract behavior of an object using the DEVS
formalism; the OM layer represents detailed behavior of the
same object using UML. The modeling at the DES layer and
the OM layer are mainly responsible for M&S experts and
domain experts, respectively. The models development is a
co-modeling process in which M&S experts and domain
experts work concurrently at different abstraction layers for
identical objects in a co-operative manner. The proposed
approach would be most effective for modeling systems in
which M&S experts do not know domain knowledge in
details, such as war game modeling.

1 INTRODUCTION

Discrete event modeling can be considered as a process
of abstract knowledge representation about a real-world
system. As a model the representation should be executable
by a simulation environment to analyze the system with
respect to modeling objectives. The process may base on
different world views for modelers such as event-oriented,
process-oriented, object-oriented, and others. Among them
the object-oriented (OO) approach may be most compatible
to a real world system from the system-theoretic view point
of model representation.

System-theoretic representation first specifies a system
as a set of inputs, a set of outputs and a set of states. It then
defines a set of operations on the representation. The DEVS

formalism, which represents a discrete event system in the
system-theoretic view point, is known to be compatible with
the OO world view. Moreover, the formalism supports
hierarchical, modular specification of discrete event models
which allows us to assemble previously developed
component models in a flexible manner.

Given modeling objectives modeling and simulation
(M&S) experts should represent only abstract knowledge of
the system to be modeled, which meets the objectives. For
such abstraction M&S experts should have deep knowledge
of the modeled system. However, this is not always the case,
especially for war game modeling. In fact, it is practically
rare that military experts develop a war game model; instead
they may define functional requirements to meet modeling
objectives, which eventually are transformed to a simulation
model by M&S experts. Thus, war game modeling requires
cooperative teamwork between domain experts and M&S
experts in a whole modeling process. This paper proposes a
framework which supports the teamwork in war game
model development.

The methodology employs a layered approach in models
development in which the upper layer represents abstract
behavior of an object and the lower layer represents details
of the object. The upper layer is called a discrete event
system (DES) layer; the lower layer is called an object
model layer. The modeling at the DES layer and the OM
layer are mainly responsible for M&S experts and domain
experts, respectively. The models development is a co-
modeling process in which M&S experts and domain
experts work concurrently at different abstraction layers for
identical objects in a co-operative manner.

There has been some effort for communicating and co-
operation between military domain experts and M&S
experts using UML[1]. However, that approach is horizontal
one. It means that domain experts first analyze the system
specification using UML, develop several diagrams of UML,
and then M&S experts transform the diagrams to DEVS

SCSC'05 65 1-56555-299-7

mailto:chsung@smslab.kaist.ac.kr
mailto:syhong@smslab.kaist.ac.kr
mailto:tkim@ee.kaist.ac.kr

models with additional information necessary for discrete
event simulation. Thus, the modeling process in [1] seems
to be sequential.

This paper is organized as follows. Section 2 describes
an object-oriented modeling and introduces UML modeling
and DEVS formalism. Section 3 discusses the proposed
layered structure. Section 4 presents the co-modeling
methodology for the models development within the
proposed layered structure. In Section 5, an example of a
navy war game model is developed within the proposed
method. Conclusion is made in Section 6.

2 UML AND DEVS FORMALISM: BRIEF REVIEW

OO modeling provides a natural and powerful paradigm
for representing the elements of a discrete event system and
their behavior. In this section, we describe an instruction of
UML as an OO modeling language and DEVS formalism
for OO discrete event system modeling.

2.1 UML Modeling

The Unified Modeling Language (UML) is a standard
language for specifying, visualizing, and documenting the
artifacts of an object-oriented system under development
[2][3]. It simplifies the complex process of software design,
making a blueprint for construction. This sub-section
describes only three diagrams in UML, which are used for
modeling of an object at the OM layer. They are use case
diagram, class diagram, and sequence diagram.

2.1.1 Use Case Diagram
A use case diagram is a behavior diagram that defines a

set of use cases and actors and relationships between them.
As a behavioral classifier the diagram defines a sequence of
actions, performed by one or more actors and a system,
which results in an observable value to one or more actors.
For system developers, this is a technique for gathering
system requirements from a user’s point of view.

2.1.2 Class Diagram
A class diagram is a structure diagram that shows a set

of classes, interfaces, and/or collaborations and the
relationships among these elements. A class includes name,
attributes and operations. This diagram is a central modeling
technique that runs through nearly all object-oriented
methods and represents the static part of a system.

2.1.3 Sequence Diagram
A sequence diagram is an interaction diagram that

focuses on the time-ordering of a message between objects.
A sequence diagram depicts a sequence of actions that occur
in a system which is a very useful tool to easily represent
the dynamic behavior of the system. This diagram includes
objects and messages in two-dimensional form in nature. On
horizontal axis, it shows the life of objects that it represents,
while on the vertical axis, it shows the sequence of the
creation or invocation of these objects.

2.2 DEVS Formalism
The DEVS formalism specifies discrete event models in

a hierarchical and modular form [4]. With this formalism,
one can perform modeling more easily by decomposing a
large system into smaller component models with coupling
specification between them. There are two kinds of models:
atomic model and coupled model.

An atomic model is the basic model and has
specifications for the dynamics of the model. Formally, a 7-
tuple specifies an atomic model M as follows.

M = < X, Y, S, δext, δint, λ, ta >,
where

X: a set of input events;
Y: a set of output events;
S: a set of sequential states;
δext: Q × X S, an external transition function,

where Q = {(s,e)|s∈S, 0≤e≤ta(s)} is the total state
set of M;

δint: S S, an internal transition function;
λ: S Y, an output function;
ta: S R+

0,∞ (non-negative real number), time advance
function.

A coupled model provides the method of assembly of
several atomic and/or coupled models to build complex
systems hierarchically. Formally, a coupled model is
defined as follows.

DN = < X, Y, M, EIC, EOC, IC, SELECT >,
where

X: a set of input events;
Y: a set of output events;
M: a set of all component models;

EIC⊆DN.X × ∪M.X: external input coupling;

EOC⊆∪M.Y × DN.Y: external output coupling;

IC⊆∪M.Y × ∪M.X: internal coupling;
SELECT: 2M – Ø M: tie-breaking selector.

An overall system consists of a set of component models,
either atomic or coupled, thus being in hierarchical structure.
Each DEVS model, either atomic or coupled model, has
correspondence to an object in a real-world system to be
modeled. Within the DEVS framework, model design may
be performed in a top-down fashion; model implementation
in a bottom-up manner.

3 PROPOSED LAYERED STRUCTURE FOR OO DES
MODELING

This section proposes a layered structure for object-
oriented modeling in simulation systems development,
especially war game simulation systems. The process of the
development may be divided in several layers in which an
upper layer may use services provided by a lower layer.

3.1 Motivation: OO Modeling

The proposed framework is based on object-oriented
model development which establishes an explicit
correspondence between real-world objects and simulation

SCSC'05 66 1-56555-299-7

models in one-to-one manner. As is well known OO
modeling is originated from the discrete event modeling and
simulation language, SIMULA’67. However, OO modeling
of general software does not need to represent an object at a
discrete event system level which requires additional
semantics. UML is one such modeling methodology which
is widely used in software engineering society [5]. On the
other hand, the DEVS formalism supports precise semantics
to specify discrete event models in the OO view point,
which is widely used in discrete event M&S society. As
shown in Figure 1 both DEVS and UML are object-oriented
modeling framework which was inherited from the discrete
event simulation language, SIMULA’67. However, the main
difference between the two methods is that UML may not
be basis on formal semantics of specification of an object as
a discrete event model. More specifically, UML does not
support specification of time advance for discrete event
simulation. Thus, as shown in Figure 1 some additional
information is required to completely specify an object as a
discrete event model by using UML. On the other hand, any
operation on the object can be specified by UML. This is a
motivation of the proposed layered structure for OO
modeling of discrete event models using both UML and
DEVS formalism.

Simular 67

OO Discrete Event
Simulation Lang.

DEVS
Formalism

Math Framework
For DES Modeling

UML Method

OO Spec. of
Software

DEVSim++

DEVS Simulation
Engine

C++

General Purpose
Prog. Lang.

DES Modeling Software Modeling

C++ class library for
DEVS simulation

Execution of
DEVS Spec

Execution of
UML Spec

Execution of Objects in time order Execution of Objects in calling order

DES = Software with time constraints

Additional information
is needed

Figure 1. OO Modeling: Simulat'67 to UML and DEVS

3.2 Layered Structure

The main purpose of the proposed framework is to
partition specifications of a discrete event model of war
games in two expert groups: military domain experts and
M&S experts. To do so we view the DEVS framework as a
superset of the UML methodology in its modeling power. In
other word, a DEVS model can represent all information
which a UML model can specify, but the other way around
is not true. Assuming that domain experts and M&S experts
are different we propose a layered approach to OO discrete

event modeling. The approach represents a discrete event
model in two layers: a discrete event system model (DES)
layer and an object model (OM) layer. More specifically,
the OM layer specifies details of object operations on
variables of an object; the DES layer specifies abstract
operations on states of the same object which determine
simulation time advance and output events generation. In
fact, the proposed layered framework works as a client-
server architecture in that the abstract operations of an
object exploit the detailed operations of the same object in
model representation. Figure 2 shows the layered structure
for DEVS framework for development of interoperable war
game simulators, which includes the proposed layered
approach for DEVS model development.

As shown in Figure 2 domain knowledge for the system
to be modeled is represented by mathematical equations,
rules or even verbal descriptions which are available in text
books, field and/or technical military manuals.

Network

Simulation Interoperation Layer:
RTI Services

DES Simulator Layer:
DEVS Abstract Simulator

DES Model Layer:
DEVS Specification

Objects Model Layer:
UML Specification

Domain to be simulated

Service
request

Service
request

Service
request

Result
ack

Result
ack

Result
ack

Requirement analysis
and specification

Software engineer
with M&S
knowledge

Software engineer
with DEVS
knowledge

M&S engineer
with DEVS
knowledge

Software engineer
with domain
knowledge

Time
synchronization

and data exchange

Timely calls of
transition functions

and output

Time associated
output and transition

functions
with/without inputs

Operations on data
with/without inputs

and output rule

Text book
Manual (FM, TM)
Expert experience

grant (NER) *
Reflect x

x EIC, δext
* δint, λ, EOC
y IC

δext Insert (s, x)
δint delete (s)
λ first (s)
ta: S R

Insert (s, x)
delete (s)
first (s)

Equations
Rules
Verbal descriptions

Figure 2. Proposed layered structure of OO DES modeling

Such knowledge can even be obtained by expert
experience in military service. Extraction of appropriate
equations and rules from the domain knowledge which meet
modeling objective can be done by military experts. To be
successful they should clearly identify modeling objectives.
This is not the case for modeling of hardware and/or
processes for which M&S experts without military
knowledge can understand. Examples of such modeling
include performance modeling of computer/communication
systems and of manufacturing systems. Technically,
extracted information should be specified as objects and
their relationship at the OM layer. UML is employed at this
phase of specification. More specifically, simulator
architecture should be identified in form of a collection of
objects and relationship between objects. Each object should
be represented by inputs, outputs and variables and their
operations. For example, an object QUEUE may have such
operations as insert(s, x), delete(s) and first(s) where s is
state and x is an input event. Note, however, that such

SCSC'05 67 1-56555-299-7

operations are not complete enough to represent QUEUE as
a discrete event model.

A discrete event model for QUEUE can be represented
by the DEVS formalism. The formalism has four
characteristic functions for discrete event modeling: external
transition, internal transition, output, and time advance
function. Consider the external transition function of the
QUEUE model, which specifies the update rule of state s
when an input is received. Intuitively, the function is the
same as insert(s, x) defined in the OM layer. Likewise, the
internal transition function is same as delete(s); the output
function is the same as first(s). Thus, the QUEUE model at
the DES layer using the DEVS formalism can directly use
services of the QUEUE model provided by the OM layer.
To be complete, however, the QUEUE model at the DES
layer should has time advance information for discrete event
simulation, which can be done by the time advance function
of the DEVS formalism.

The proposed layered approach makes it possible for
domain experts and M&S experts to work concurrently in
cooperative manner. This is a major advantage of the
proposed approach in OO war game model development.
More specifically domain experts focus just on UML
modeling and M&S experts on DEVS modeling. Of course,
the process from UML to DEVS modeling may not always
be sequential unless all operations needed in DEVS
modeling are not ready in UML models. In such a case,
M&S experts may request domain experts to define
operations which M&S experts need. However, we believe
that good cooperation between domain experts and M&S
experts from the beginning of system design may minimize
such a backward process or even can eliminate it.

3.3 Semantics for DES Model in two layers

We formalize the proposed layered framework using set
theoretic representation. To show relation between two
layers in formal manner we employ the Finite State Machine
formalism as semantics for UML modeling. Then, a
simulation model is represented by two objects and
relationship between the two: (1) one represented by finite
state machine (FSM) at the OM layer; (2) the other by
DEVS formalism at the DES layer; (3) relation between
elements in DEVS formalism and those in FSM
specification. The formalism may give sound semantics for
the proposed layered approach. The relations are as follows.

A DEVS atomic model includes three sets and four
functions, and FSM model includes three sets and two
functions. Figure.3 shows the mapped relation between
DEVS and FSM. Input events, output events, and the state
sets of DEVS are mapped to those of FSM with same
relation. However, there are two transition functions in
DEVS formalism, while only one transition function in
FSM.

M = <X, Y, S, δext, δint, λ, ta> FSM = <X, Y, S, δ, λ>

S1
(A1)

S2
(A2)

x

(y, r)

A1
A2

A11, A12
A2

Activities

s11 s12
x'

r : elapsed time

s13 s14
x'

s21 s22
x''/y

A11

A12

A2

DEVS vs FSM
X = X
Y = Y
S = S

Activities of δext, δint = δ
λ = λ

Figure 3. Relation between DEVS and UML

In this methodology, two transition functions are
mapped to activities, and each activity means a transition of
FSM. When the current state is S1 and input event is x,
activity A1 should be operated. In the current state S1,
activity is defined by transition from s11 to s12 of FSM. If
there are several activities, the same number of transitions
of FSM exists. Therefore, DEVS formalism express the
activities occurred by two transition functions as FSM state
transition.

4 CO-MODELING METHODOLOGY USING
LAYERED STRUCTURE

To exploit the layered approach efficiently we propose a
co-modeling methodology in discrete event models
development. The methodology is analogous to HW/SW co-
design in VLSI systems design.

4.1 Modeling Process using UML and DEVS

HW/SW co-design means the meeting of system-level
objectives by exploiting the trade-offs between hardware
and software in a system through their concurrent design.
To do so, system specification is partitioned in hardware
and software parts for concurrent job. After that, each part is
implemented and then integrated for co-simulation [6] [7].

Co-modeling methodology is analogous to HW/SW co-
design and the process is shown by Figure 4. At first, we
design the simulator architecture from requirements and
specification for a system to be simulated. If M&S experts
do not need detailed knowledge on an object in atomic
DEVS modeling, they define three sets and four functions
according to DEVS formalism. On the hand, if atomic
DEVS modeling needs detail knowledge on the object,
military domain experts defines such knowledge in forms of
operations on the object using UML. Then, M&S experts
employ the operations as services. Specifications of DEVS
and UML models are implemented by DEVSim++ and C++,
respectively. Figure 4 shows the co-modeling methodology.

SCSC'05 68 1-56555-299-7

Figure 4. Co-modeling methodology using UML and
DEVS

4.2 Advantage

Within the proposed methodology M&S experts and
domain experts design simulation models in a closely-
coupled manner. The methodology should identify which
objects are modeled only at the DES layer and which are
modeled at both DES layer and the OM layer. Modeling at
the DES layer does not requires specific knowledge of
objects which only domain experts understand. However, if
M&S experts do not understand detail operations of an
object then the operations should be provided by domain
experts. In this sense, DEVS modeling is viewed as
software and UML modeling viewed as hardware in the
HW/SW co-design methodology. Thus, the main advantage
of the proposed methodology is a concurrent process in
models development.

5 Example: A Simple War Game Model

The proposed layered approach is applied to a simple
war game model. Assuming that there are many ships in a
navy war game model and that the ships are moving on the
sea, the positions are ordered by a gamer. The scenario of
the war game simulation is following:

1. A gamer gives a command to move a ship to some
point as a destination.

2. The ship calculates the next position per interval time
until it arrives at the destination point.

If M&S experts do not know operational rules for a ship
to move they could not specify a discrete event simulation
model for the ship. In such a case, the rules should be
specified by navy domain experts at the OM layer modeling,
which the M&S experts can use at the DES layer modeling.

Let us explain the model specifications of the ship object at
the OM layer and the DES layer.

5.1 OM Layer

In the OM layer a ship object can be modeled by
attributes and operations defined on the object. The
modeling at the layer is the same as one used in a general
class definition in OO software development.

For maneuver of a ship, the ship has velocity, heading,
and position as attributes. Similarly, operations on the ship
include “move” the definition of which needs additional
operations. Those operations are to calculate heading,
velocity, and next position. Thus, at this OM layer military
domain experts should offer algorithms for the operations.
Figure 5 represents a class diagram of the ship object at the
OM layer in relation to maneuver.

Figure 5. Class diagram of the system

5.2 DES Model Layer

In the DES layer a ship object should be specified in
form of timed state transition. In other word, the object has
specification of a state transition with an associated
occurrence time.

M&S experts specify such information on the ship
object using the DEVS formalism as follows:

ext

int

ext int

X = {"move_order"}

Y = {}

S = {WAIT, MOVE}

δ : WAIT "move_order" MOVE

δ : MOVE MOVE

ta(WAIT) =

ta(MOVE) = t1 (interval time for move operation)

M = <X, Y, S, δ , δ , , ta>λ

× →

→

∞

As shown in the specification a ship is waiting for an
input command of “move_order” at the initial state of
“WAIT.” Time advance at the state is defined as an infinite
in the DEVS formalism, meaning that nothing can happen at
the state unless an input event occurs.

When the state of the ship is ‘WAIT’ and an input event
of “move_order” occurs, the state transitions to the ‘MOVE’
state and the ship begins moving for a destination point. In
this state, the time advance is some finite time because the

SCSC'05 69 1-56555-299-7

position of the ship is changed at each unit time. In the
‘MOVE’ state, a sequence of operations is calculated in
order to compute the next position of the ship after a unit
time. Those operations might be defined in the OM layer.
Figure 6 shows the ship object model at both the DES layer
and the OM layer. Note in the Figure that a state transition
at the MOVE state of the DES layer three operations –
calculations of heading, velocity and next position - defined
at the OM layer.

Figure 6. DEVS graph and classification of DES layer and
OM layer

The relation between the OM layer and the DES layer is
shown by Figure 7. This figure also represents the modeling
procedure from domain requirements to the DES layer.

Figure 7. Example of layered structure of war game model
6 CONCLUSION

This paper proposes a methodology for the OO
development of war game models within the framework.
The methodology develops war game models at two layers:
a discrete event system (DES) layer and an object model
(OM) layer. The main objective of the approach was to
partition model specifications in two layers by which co-
work between military domain experts and M&S experts

would be possible. In the OM layer, domain experts define
attributes and operations of an objects using UML. In the
DES layer, M&S experts define time associated output and
transition function using DEVS formalism by use of
operations defined in the OM. A co-modeling methodology
using this approach was also proposed in this paper. A case
study demonstrated effectiveness of the proposed approach.
This approach may be applied to more complex war game
modeling projects.

REFERENCES

[1] Su-Youn Hong and Tag Gon Kim, “Embedding UML
Subset into Object-oriented DEVS Modeling Process,” in
Proceedings of the Summer Computer Simulation
Conference, San Jose, California, USA, July 2004, pp. 161-
166.
[2] Booch, Rumbaugh, and Jacobson. The Unified Modeling
Language User Guide, Addison-Wesely, Reading,
Massachusetts, 1998.
[3] Rumbaugh, Unified Modeling Language Reference
Manual, Addison-Wesely, Reading, Massachusetts, 1999.
[4] Bernard P. Zeigler, Herbert Praehofer, and Tag Gon kim.
Theory of Modeling and Simulation, ACADEMIC PRESS,
2000.
[5] Mark Priestley, Practical Object-Oriented Design with
UML, The McGraw-Hill Companies, 1996.
[6] Jay K. Adams and Donald E. Thomas, “The Design of
Mixed hardware/software systems,” in Proceedings of the
33rd annual conference on Design automation, Las Vegas,
Nevada, USA, June 1996, pp. 515-520.
[7] David W. Franke and Martin K. Purvis,
“Hardware/Software CoDesign: A Perspective,” in
Proceedings of the 13t international conference on Software
engineering, Austin, Texas, USA, 1991, pp. 344-352.

SCSC'05 70 1-56555-299-7

	TITLE PAGE
	SCSC Table of Contents
	ACROBAT HELP
	Layered Approach to Development of OO War Game Models Using DEVS Framework
	Keywords:
	1 INTRODUCTION
	2 UML AND DEVS FORMALISM: BRIEF REVIEW
	2.1 UML Modeling
	2.1.1 Use Case Diagram
	2.1.2 Class Diagram
	2.1.3 Sequence Diagram

	2.2 DEVS Formalism

	3 PROPOSED LAYERED STRUCTURE FOR OO DES MODELING
	3.1 Motivation: OO Modeling
	3.2 Layered Structure
	3.3 Semantics for DES Model in two layers

	4 CO-MODELING METHODOLOGY USING LAYERED STRUCTURE
	4.1 Modeling Process using UML and DEVS
	4.2 Advantage

	5 Example: A Simple War Game Model
	5.1 OM Layer
	5.2 DES Model Layer

	6 CONCLUSION
	REFERENCES

