A Heterogeneous Distributed Simulation Framework
Based on DEVS Formalism

Yong Jae Kim and Tag Gon Kim

Dept. of Electrical Engineering
Korea Advanced Institute of Science and Technology
373-1, Kusong-Dong, Yusong-Gu, Taejon, 305-701, KOREA
yjkim@coregate.kaist.ac.kr
tkim@eekaist.kaist.ac.kr

Abstract

This paper proposes a heterogeneous distributed
stmulation framework based on the DEVS formalism.
A software bus called the DEVS bus is proposed, which
virtually connects the DEVS models and conventional
non-DEVS models developed by different simulation
languages such as SIMAN, SLAM, SIMSCRIPT, and
so on. For the DEVS bus protocol, the hierarchi-
cal stmulation algorithm proposed by Zeigler is used.
For communicating between DEVS models and non-
DEVS models connected on the DEVS bus, a proto-
col converter ts proposed. The converter is realized by

transformation of non-DEVS models into an equiva-
lent DEVS models at the 1/0 level.

1 Introduction

Parallel and distributed discrete event simula-
tion(PDES) [1] has been widely studied as a promis-
ing technology. PDES has been mainly concentrated
on how to achieve reasonable speedup while guaran-
teeing that events are processed in chronological order
by using a synchronization algorithm. PDES has been
conventionally developed in homogeneous simulation
environments. So, there is no opportunity to use mod-
els developed by different simulation languages.

We propose a heterogeneous distributed simulation
framework based on the DEVS formalism [2]. Because
of its great expressive power to represent discrete event
systems, the DEVS formalism is selected as a basic
structure of the framework. The DEVSim++ environ-
ment, a realization of the DEVS formalism in C++ [3],
is used to develop the supervisory simulation model.
As node simulation models, we use simulation mod-

els developed by different simulation languages such
as SIMAN [4], SLAM [5], SIMSCRIPT [6] , and so on.
The proposed framework makes it possible for models
developed by different simulation languages to com-
municate each other.

In Distributed Interactive Simulation [7], each sim-
ulator communicates with others through passing Pro-
tocol Data Units predefined for the military domain.
Unlike DIS, our framework is general enough to be
applicable to several domains.

2 The Proposed Framework

The framework consists of a supervisory simula-
tion model, node simulation models, and the DEVS
bus system. The overall system architecture of the
framework is shown in Figure 1. We use the DE-
VSim++ environment to represent the supervisory
simulation model, because the environment allows us
to model and simulate various target systems in a gen-
eral and convenient manner. Widely available con-
ventional simulation models such as SIMAN, SLAM,
and SIMSCRIPT models, can be used as node simu-
lation models. A node consists of a protocol converter
and a node simulation model. The DEVS bus system
is developed by using the concept of the hierarchical
simulation algorithm proposed by Zeigler [2].

To simulate the whole simulation model in a het-
erogeneous distributed environment, the first step is to
partition the model into a supervisory model and node
models. After partitioning, client models are assigned
to the supervisory simulation model and server mod-
els are allocated to node simulation models. A node
simulation model acts as a server to process requests
from the supervisory simulation model.

Supervisory
#imulation
Model esessemeetteeee
/- Hi hi 1‘.‘
. s 37 : Hierarchical
DEVSimes o Bus Simulation .
...... Arbiter Algorithm

DEVS frotesel
gpss [rTerter
GPSS' Nede

Figure 1: Overall System Architecture

The DEVS software bus system virtually connects
the supervisory simulation model and node simulation
models. We use the DEVS formalism and its associ-
ated abstract hierarchical simulation algorithm. The
root-coordinator of the hierarchical simulation algo-
rithm can be regarded as the bus arbiter of the DEVS
bus system.

As described above, the supervisory simulation
model acts as a client and node simulation models act
as servers. When the supervisory simulation model
sends a request message which is one of the (x, t) and
(x, t) message, a node simulation model sends a result
message as a reaction of the request. So, we can think
node simulation models as resources and the supervi-
sory simulation model as a processor.

Note that in our simulation scheme a node sim-
ulation model cannot send messages to the other
node simulation models directly. Instead the mes-
sage should first be sent to the supervisory simulation
model. Then the supervisory simulation model routes
the message to the destination model. Moreover, the
bus system can multicast a message to several node
simulation models at a time as a hardware bus system
does.

The purpose of the framework is to support sim-
ulation of DEVS models together with models in
conventional simulation languages. However, sim-
ulation methodologies for the conventional simula-
tion models differ from that of the DEVS mod-
els. = To overcome such difference may require a
protocol conversion mechanism. The components
DEVS/SIMAN, DEVS/SLAM, DEVS/SIMSCRIPT,
and DEVS/GPSS shown in Figure 1 are protocol con-

verters. These converters translate DEVS requests
into messages which the specified simulation model
can understand. For example, DEVS/SIMAN con-
verter translates DEVS requests into SIMAN mes-
sages and vice versa. These converters are defined by
an equivalent 1/O transformation of node simulation
models into DEVS models.

3 Hierarchical Simulation Algorithm
of DEVS Models

PEL

BUF ey ~ PROC ey

root-co-ordinator R:PEL

(x,t) (done, t)
(y.t)

(*,t)

co-ordinater C:PEL
coupled model PEL

(x, t (done, t)

)
('.t/ \(Y,f-)
(done, t) (x,t)

(y,t) (*,t)

simulator S:BUF
atomic model BUF

simulater S:PROC
atomic model PROC

Figure 2: Hierarchical Simulation Algorithm

The hierarchical simulation algorithm for the cou-
pled model, PEL, which has two atomic models, BUF
and PROC [8], is shown in Figure 2. Attached to
each DEVS model is an associated abstract simulator,
either a stmulator or a coordinator. Two atomic mod-
els, BUF and PROC, have associated simulators of
S:BUF and S:PROC, respectively. The coupled model,
PEL, has the associated coordinator of C:PEL. Finally,
R:PEL is the root-coordinator whose job is to manage
the overall simulation clock. These abstract simula-
tors can be thought as virtual processors.

Assume that simulation starts by generating an
event from BUF at t = 0. To do so, the initial val-
ues of the next event times (tys) for the simulators
S:BUF and S:PROC are set to zero and infinity, re-
spectively. Once tys for S:BUF and S:PROC are so
initialized, the ty of C:PEL (¢n(C:PEL)) is set to
the minimum of the ¢ty of two component simulators.

When tn(C:PEL) is initialized to zero, C:PEL sends
a (done, tny(C:PEL) = 0) message to R:PEL to in-
form that scheduling has been done. Once R:PEL
receives the done message, it sends a (x, t = 0) mes-
sage to C:PEL. Once C:PEL receives the message,
it routes the message to its component, whose tp is
the same as zero. In this case, C:PEL routes the (,
t = 0) message to S:BUF. S:BUF requests BUF to
produce an output and execute its internal transition
function followed by its time advance function. Af-
ter such a request, S:BUF updates its tx based on
the BUF’s time advance function. S:BUF now trans-
mits the BUF’s output message, (y, t = 0), to C:PEL.
When C:PEL receives the message, it translates the
message in an input message of (z, t = 0) and sends it
to S:PROC. Because the message is an external one,
S:PROC requests PROC to execute the PROC’s ex-
ternal transition function followed by its time advance
function. S:PROC updates its ¢y, which, in turn, up-
dates tn(C:PEL). When R:PEL receives the (done,
tn(C:PEL)) message from C:PEL, R:PEL generates
another (*, t = t§(C:PEL)) message, which C:PEL
routes either to S:BUF or to S:PROC depending on
their tys.

To send messages to the destination model cor-
rectly, the supervisory simulation model must have
the global view of the overall simulation model. This
is obtained by the hierarchical simulation algorithm
because the root-coordinator knows where the other
coordinators are located.

We call the hierarchical simulation algorithm the
DEVS bus protocol. In a common hardware bus, when
a processor wants to access a resource, the processor
should first send a bus request signal to a bus arbiter.
Then the arbiter sends a bus grant signal to the pro-
cessor if there is no conflict. After receiving the bus
grant, the processor can access the resource. In the
DEVS bus system, we can think the root-coordinator
as a bus arbiter.

When a node model wants to send a message to an-
other node model, it should send a (done, ty) message
to the root-coordinator. When the simulation time of
the system is ¢y, the root-coordinator sends a (*, ty)
message to the node model. Then, the node model
sends a (y, 1) message to the root-coordinator which
routes the message to the destination node model.

4 Protocol Conversion

The proposed framework supports the reuse of con-
ventional simulation models already developed by dif-
ferent simulation languages as node simulation mod-

els. When the node simulation models are integrated
with the supervisory simulation model on the DEVS
bus system, the mismatch between simulation proto-
cols have to be conquered. This is because the node
simulation models do not use the hierarchical simula-
tion algorithm explained in the previous section.

The DEVS bus system uses four kinds of messages,
(*,t), (x, t), (done, t) and (y, t) message. If an atomic
DEVS model receives an external message, (x, t), it
cannot immediately send a result message to its influ-
encees. Only after receiving an (%, t) message from
the root-coordinator, the bus arbiter of the DEVS bus
system, the atomic model can send an output message
by executing its output function.

—-Protocol Converter-

From-DEVS {To-DEVS

?From-DEVS ?Frpm-SIMAN
From-SIMAN| ! To-SIMAN To-SIMAN

Phase [Job l processing’rimel

DEVS Interface
for server Model

SIMAN Server Model

out e—i 229 o—— in

Figure 3: Protocol Converter

However, in conventional node simulation models
such as SIMAN, SLAM, and SIMSCRIPT, there is no
time advance function and no classification of mes-
sages in an explicit form. To join the node simulation
models to the DEVS bus system, we propose a simple
protocol conversion method. The protocol converter
has the same I/O structure of the original simulation
model but different internal structure.

Consider a SIMAN simulation model which acts as
a server for a job. The model receives a job, processes
it, and finally outputs a result. A protocol converter
for the SIMAN server model is depicted in Figure 3.
With the help of the protocol converter, a simulation
protocol of a node simulation model is converted into
the DEVS bus protocol.

This simple method works as follows. When a
protocol converter receives an (x, t;) message from

the From-DEVS port at the WAIT_DEVS phase, it
executes an external state transition function which
makes the model’s phase SEND_SIMAN. It routes the
message to the SIMAN model within the same node
through the To-SIMAN port and waits a result from
the SIMAN model at the WAIT_SIMAN phase. The
SIMAN model processes the message which comes
from the protocol converter. After processing the
message, for a sojourn time tp,., it sends a result
to the From-SIMAN port of the protocol converter.
Then the protocol converter saves the result and the
time as its state variable and changes its phase into
SEND.DEVS. As a result of this external state tran-
sition, the protocol converter sends a (done, tn) mes-
sage to its parent. In this case, the next scheduling
time of the protocol converter, ty, is t; + tyroc. When
the protocol converter at the SEND_DEVS phase re-
ceives an (*, ty) message from the From-DEVS port,
the protocol converter sends the result which was
saved as the state variable to its parent.

The protocol conversion mechanism of other simu-
lation models such as SLAM or SIMSCRIPT, is the
same as the SIMAN model. Therefore, the simulation
protocol of a SIMAN model is easily converted into
that of the DEVS bus system.

To route messages from a protocol converter to a
node simulation model, several mechanisms can be
possible. For example, interprocessor communication,
event handling with user written simulation code, and
file /O, may be possible. Selecting one of the schemes
is an implementation issue. The user code option pro-
vides the flexibility to develop discrete event models.
For example, the SIMAN language allows the user to
include lower-level-language functions and routines in
the simulation model.

5 Modeling Example : A Simple Man-
ufacturing System

Consider a simple manufacturing system depicted

in Figure 4. The system consists of a flexible manu-
facturing cell (FMC), an inspection station, a painting

station, and a packaging station.
Pnckuk\a

pass
Inspection Painting

!njoct

bage
stack

N ™

Figure 4: Simple Manufacturing System

The FMC consists of 10 horizontal milling machines
which can perform any of three operations. Five of the
milling machines are dedicated to perform operation
A, one of the machines is dedicated to perform opera-
tion B and two of the machines are dedicated to per-
form operation C. Two of the 10 milling machines are
classified as flexible. The inspection station tests parts
which are transferred from the FMC. If the parts are
found to be functioning improperly, they are routed to
a garbage stack. After the parts are completely pro-
cessed at the inspection station, they are transferred
to the painting station and then they are packed at
the packaging station. Finally, they are transferred to
a staging area where they exit the system. Figure 5 is
a DEVS representation of the target system with no
experimental frame.

MODEL

Fc—"r -C_1I
in| in out fou in e} reiect
in Tesgy BUF1 dore T nTrengy] 2vrz sl nsp i
in n 33 T.
dope

~C_Paint - C-Fack

in out Jout] 1n out Jour [} ..
resdy] BUF3 24 Faint {aone resdy| BUF4 124 Pack [aone
in n in n

Figure 5: DEVS Model For Simple Manufacturing
System

Assume that we have a FMC model and an in-
spection station simulation model already developed
in SLAM II and a painting station model and a pack-
aging station model in SIMAN IV | respectively. Then
our framework proposed in this paper reuses these sim-
ulation models in the following manner.

First, the whole simulation model is partitioned
into node models and a supervisory model. Let us
allocate each station coupled model to a node and an
experimental frame to the supervisor.

Then, using the protocol conversion method, a pro-
cess atomic model of each node simulation model is
converted into a DEVS model which has the same 1/0
structure as the original process atomic model.

As a result of these two steps, we can partition the
whole simulation model as shown in Figure 6. The
other models, BUF, GEN, and TRANSD, are imple-
mented on the DEVSim++ environment.

A protocol converter for each station model can be
easily developed. In this example, protocol convert-

DEVSime+ e

Figure 6: Model Partition

ers as protocol converters for the FMC, the painting
station, and the packaging station should be the same
as one in Figure 3 because these station models have
the same 1/0 structure. The inspection station, how-
ever, has an input port and three output ports. The
protocol converter for the station can be developed as
shown in Figure 7. A pseudo DEVSim++ code for the
protocol converter is shown in Figure 8.
L‘N~Dtvs-pns

’ To-DEVS-reject

r— INSPECT_CONVERT

1To-DEVS-re)ect

From-DEVS
From-SINAN-pass

From-SINAN-reject

’ To-SIMAN

Fhase Fob I prqcnsxw‘nn]

Figure 7: Protocol Converter For Inspect Station

6 Summary

We propose a heterogeneous distributed simulation
environment based on DEVS formalism. To reuse
models developed by different simulation languages,
we propose a simple simulation protocol conversion
method between simulation methodologies for the con-
ventional simulation models and that of the DEVS
models. The protocol converter is implemented on
the DEVSim++ environment. The supervisory simu-
lation model and conventional simulation models are
connected on the DEVS bus system.

The protocol conversion method suggested in this

// external transition functiecm
void INSPECT_CONVERTER ext_transfn(State_varsk s,
const timeTypek e, const Messagesk message)

(¢
switch (*message.get_port()) (

case From-DEVS 13
s.set_value("Phase”, SEND_SIMAN);
break;

case From-SINAN-pass 1
s.set_value("Job", (Jobk)*message.get_3job());
8. m _value (*processingTime”,

(timeTypek) *message.get tm());

s.set_value("Phase”, SEND_PASS)
break;

case From-SIMAN-xeject s
s.set_value ("Job", (Jobk)*message.get_dJob());
s.set_value("processingTime”,

(timeTypek) *message.get_time());

s.set_value ("Phase”, SEND_REJECT);
break;

default
ERROR;

}

)

// intermal transition functiocm
wold INSPECT_CONVERTER_int_transfn(State_varsk s)

<
switch (s.get_wvalue ("Phase”)) (
case SEND_SIMAN :
s.set_value ("Phase”, WAIT_SIMAN); break;
case SEND_PASS
case SEND_REJECT 13
s.set_vwvalue("Phase”, SEND_DONE); break;
default 3
ERROR;
]

)

// output functiom
wvoid INSPECT_CONVERTER outputfn (const State_varsk s,
Messagesk message)

{
switch (s.get_value("Phase”)) (

case SEND_SIMAN :
message.set_port_val ("To-SIMAN®, job);
break;

case SERD_PASS
message.set_port_val ("To-DEVS.
break;

case SEND_REJECT 3
message.set_port_val (*To-DEVS-reject®, job);
break;

case SEND_DONE 3
message.set_port_val ("To-DEVS-done”, dummy);

-pass”, job);

/! time advance functiocn
wvoid INSPECT_COMVERTER time_advancefn(const State_varsk s)

{
switch (s.get_value ("Phase”)) (
case SEND_SIMAN 3
case SEND_DONE @
return 0;
case SEND_PASS 3
case SEND_REJECT 3
return s.get_value("processingTime");
case WAIT_DEVS 3
case WAIT _SIMAN :
return Infinity;
default :
ERROR;

Figure 8: Pseudo DEVSim++ Code Of Protocol Con-
verter For Inspect Station

paper is very simple. The method will be formally
improved in the future. Currently, we are develop-
ing the overall system architecture on Unix PVM and
Windows PVM environment [9] [10].

References

(1] R. Fujimoto, “Parallel Discrete Event Simulation,”
Commaunications of ACM., Vol. 33, No. 10, Octo-
ber, pp. 30-53, 1990.

[2] B. P. Zeigler, “Multifacetted Modelling and Dis-
crete Event Simulation,” Academic Press, Or-
lando, FL, 1984.

[3] T. G. Kim and S. B. Park, “The DEVS formal-
ism: Hierarchical modular system specification in
C++,” Proc. 1992 European Simulation Multi-
conf., York, UK, pp. 152-156, 1992.

[4] C. Dennis Pegden, Robert E. Shannon, and Ran-
dall P. Sadowski, “Introduction to Simulation Us-
ing SIMAN,” McGraw-Hill, Inc., 1990.

[5] A. Alan B. Pristker, “Introduction to Simulation
and SLAM II,” 3rd Edition, Halsted Press Book,
1986.

(6] Edward C. Russell, “Building Simulation Models
with SIMSCRIPT 11.5,” C.A.C.1., 1983.

[7] “Standard for Distributed Interactive Simulation
- Application Protocols,” IST-CR-94-50, Institute
for Simulation and Traning, 1994.

(8] T. G. Kim, “DEVS formalism: Reusable Model
Specification in an Object-Oriented Framework,”
International Journal in Computer Simulation 5,
pp. 397-416, 1995.

[9] V. S. Sunderam, G. A. Geist, and J. Dongarra,
“The PVM concurrent computing system: Evolu-
tion, Experiences, and Trends,” Parallel Comput-
ing 20, pp. 531-545, 1994.

[10] Alexandre Alves, Luis Silva, Joao Carreira, and
Joao Gabriel Silva, “WPVM: Parallel Computing
for the People,” Proceedings of HPCN’95, High
Performance Computing and Networking Confer-
ence, in Springer Verlag Lecture Notes in CS., pp.
582-587, Milan, Italy 1995.

