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Abstract

This paper proposes a formal specification frame-
work for developing parallel software. The framework
employs a parallel-software-eztended DEVS (SDEVS)
formalism to specify parallel software in modular, hier-
archical fashion and to express specification-level par-
allelism. To erecule developed SDEVS specification,
it 1s automatically transformed into DEVS models for
parallel simulation. During the transformation, the
degree of parallelization is optimized to an underly-
ing target architecture. To show the correctness of
SDEVS, a parallel finite difference method (FDM)
problem 1s specified and ezeculed. The ezperimental
results show that the SDEVS formalism specifies par-
allel software well-defined semantics and properly uti-
lizes the inherent parallelism of the problem.

1 Introduction

Parallel programming is more difficult than sequen-
tial programming due to data decomposition, commu-
nication and synchronization among processors. Many
parallelizing compilers and their execution environ-
ments have been proposed to reduce the difficulties.
However, most of them adopted sequential program-
ming languages as their parallelism representations for
programmer’s familiarity. For this reason, complex
analyses and optimizations are needed to achieve ef-
fective performance from the sequential semantics.

Recently, researchers pay attention to formal or
graphical specification methods for their high-level
parallelism denotation and easy verification. David B.
Skillicorn proposed an architecture-independent par-
alle] computation methodology that is based on the
Bird-Meertens formalism [4]. F. Vallejo et al. pro-
posed a job level programming paradigm using ex-

tended Petri net on event-driven multiprocessor sys-
tems [6]. On the other hand, PAR-SDL adopted SDL
(Specification and Description Language) which per-
mits graphical specification and validation methods.
They also developed an SDL-to-C translator that ac-
cepts most of SDL constructs and generates hardware
independent C codes [3]. In our opinion, they need
good parallelism abstractions and should use state-of-
the-art software engineering techniques.

In this paper, we propose a new formal speci-
fication framework for developing parallel software.
To describe software formally. we devise a parallel-
software-extended DEVS (SDEVS) that is based on
the DEVS (Discrete Event System Specification) for-
malism. Modular and hierarchical structures of
SDEVS help us to specify complex software systems
efficiently and to increase the reusability of devel-
oped software. The inherent parallelism of software
is expressed explicitly by an abstracted denotation of
SDEVS. A parallel DEVS simulation environment is
used for the execution of SDEVS. Simulation for par-
allel software development allows additional fast pro-
totyping and easy debugging merits [5].

After briefly describing the proposed framework
overview, we explain the DEVS formalism and some
backgrounds in Section 3. In Section 4 and 5, SDEVS
and its language representation are described, respec-
tively. Section 6 includes an SDEVS-to-DEVS trans-
formation procedure. A parallel FDE equation and
its experimental results are discussed in Section 7. Fi-
nally, we address our conclusion in the last section.

2 SDEVS framework

Figure 1 shows the framework of this paper. We
can formally describe parallel software with three ba-
sic SDEVS models. An atomic model of SDEVS rep-




resents a basic sequential software module. A cou-
pled model has the structural and coupling informa-
tion among its children. A parallel model expresses
inherent parallelism explicitly.
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Figure 1: SDEVS framework

PSSL (parallel software specification language) is
developed as a language representation of the SDEVS
formalism. It concisely denotes SDEVS in well-defined
fashion. Finally, the SDEVS-to-DEVS transformer
automatically converts SDEVS specification into its
equivalent DEVS models for parallel execution.

3 Backgrounds
DEVS formalism

A set-theoretic formalism, the DEVS formalism
specifies discrete event systems in a hierarchical. mod-
ular form [1] [2]. In the DEVS formalism, one must
specify the basic models from which larger ones are
built and indicate how these models are connected to-
gether in hierarchical fashion. A basic model AM,
also called an atomic model, is defined (1).

AM =< XY, S, bint, bere, A ta > (1)

where,
X : External input events set;
Y : External Output events set;
S . States set;
bint (S — S) : Internal transition function;
bezt (@ x X — S) : External transition function;
A (S—=Y) : Output function;
ta (S — Ra"w) : Time advance function;

The set @ means the global state of a model or
general state variables with time informations like (2).

Q= {(s.€)|s € Sand 0 < e < ta(s)} (2)

We can specify atomic model’s dynamic nature with
state variables and their four transition functions.
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Figure 2: The relation between language and DEVS

When a model receives an external event, it deter-
mines its next state by .executing the external transi-
tion function (8.,¢). The internal transition function
(int) has state transition information when an inter-
nal timeout event is occurred. The output function
generates output events. Finally, the time advance
function has the timeout value of a state.

The coupled model contains DEVS models as
its children as well as the couplings between them.
SELECT determines a selection priority among chil-
dren when they change their states simultaneously.

CM =< XYM EC,IC,SELECT > (3)

where,

X : Input events set;

Y : Output events set;

M : Children models;

IC (C Moy x M;p) : Internal coupling relation:

EC (C CMout,in X Moy in) : External coupling re-
lation;

SELECT : Tie-breaking selector;

The DEVS models are modular because they com-
municate with others only through their 1/0O ports.
In addition, the coupled model helps us to describe a
complex system in a hierarchical manner.

DEVS as parallelism representation
We believe that DEVS is a good formalism for de-

scribing discrete event systems. A software system is
considered as a kind of discrete event system. Thus.



we adopt the DEVS formalism for specifying the sys-
tem. If we look at a software system in a pool of basic
blocks and control flows that activate the blocks, the
following mechanism will be used to represent software
by DEVS. First, the control flows correspond to state
transitions in DEVS. Second, the behavior of a soft-
ware module is divided into basic blocks, and attached
to model’s states like Figure 2. They are activated
whenever the model changes its state. Finally, events
are used to communicate data between the software
modules.

Because DEVS supports concurrent control flows,
it is natural to specify functional parallelism using the
DEVS formalism. To generate such concurrent control
flows in DEVS, we use a multicast coupling scheme. In
the scheme, an output event is multicasted into several
connected input ports simultaneously. As a result,
such multiple input events produce concurrent state
transitions of receiver models. We can also specify
data parallelism by spreading data when an event is
multicasted.

DEVS simulation environments

Currently, several DEVS based tools have been de-
veloped for model development, execution, and simu-
lation. DEVSim++ is an object-oriented DEVS sim-
ulation environment written in C++ language [10].
The environment supports user to develop hierarchi-
cal, modular discrete event models. P-DEVSim++ is
a parallel extension of DEVSim++ [11]. It can sim-
ulate DEVS models developed by DEVSim++ in a
distributed-memory architecture. For this, it parti-
tions and maps DEVS models into processors while
exploiting full parallelism of models.

4 SDEVS formalism

As mentioned in Section 1, SDEVS is an extension
of the DEVS formalism. An SDEVS atomic model is
similar to that of DEVS except actions set and ac-
tion function. The actions set includes basic blocks of
a software module. The action function acts a map-
ping function between the basic blocks and states of a
model. The logical time of SDEVS is used to synchro-
nize events because all SDEVS events are synchronized
by the logical time.

AM =< XY, S5, A, bint. ber1, A ta,a > 4)

where,
X,Y : Input/Output events set;

S : States set;

A : Actions set;

bint (S — S) : Internal transition function:

ezt (Q x X — S) : External transition function;
A (S —Y) : Output function;

ta (S — R{..) : Time advance function;

a (S — A) : Action function;

Coupled model, which has coupling information be-
tween models, has the same characteristics as DEVS
formalism.

As one of important features of this paper, SDEVS
parallel model represents the parallelism of a given
problem. It is an abstracted model that contains scal-
able behavior of an atomic model and a multicast cou-
pling scheme. The scalable nature is used for model
decomposition during parallelization. All the exter-
nal couplings are also converted into multicast cou-
plings. We can exploit functional parallelism by using
the multicast scheme. To describe the abstraction for-
mally, we add two kinds of constructs; parallel coor-
dinates (PC) and coupling vector (CV'). An SDEVS
parallel model is defined in (5).

PM =< X,Y,S, PC, A,éint, bext, N\ ta,a,ICV >
(5)

where,
X,Y : Input/Output events set;
S : State set;

PC : Parallel coordinate set;

A : Actions set;

dint (S — S) : Internal transition function;

bext (Q x X — S) : External transition function;
A (S —Y) : Output function;

ta (S — RY ) : Output function;

CV (PM[PClin x PM[PC),y:): Coupling vector;
a (S — A) : Action function;

The PC is a set of parallel coordinates referenced
in the context of an SDEVS parallel model. Using
the PC in an array index variable causes decomposi-
tions along the referenced dimension. The loops that
have PC are also decomposed. When data dependen-
cies exist among decomposed data, data transfers are
occurred through the couplings defined by CV.

Example of SDEVS

Suppose an image processing software module that
receives 100 x 100 image, processes it, and then, sends
a result for the next processing. To simplify the ex-
ample, we set one parallel coordinate in vertical direc-



tion of the image. Figure 3 shows the graphical rep-
resentation of the parallel model P:IP with its equiv-
alent block diagram. The figure shows that the P:Ip
model is converted into four atomic models during par-
allelization procedure. To distribute and collect the
original image, a distributor and a collector models
are inserted, respectively.

There are two states : WAIT and PROCESS in the
model. It waits for an input image in the WAIT
state. The image is processed and sent to another
model in the PROCESS state. An action function named
Process._image is attached to PROCESS state for actual
image processing.

IP =< X,5,Y,6int, bezt, A ta, IC, ICV, I, a > (6)

where,
X = {image_in},
Y = {image_out};
S = {phase, image[y = 100][z = 100]};
phase = {WAIT, PROCESS};
8int(PROCESS) = W AIT;
bezt(WAIT, image_in) = PROCESS;
A(CALC) : image_out:
ta(WAIT) = oc;
ta(PROCESS) = 1;
a(PROCESS) = {process_image}:
I={y}h
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(a) Image processing parallel model (b) Equivalent block diagram

Figure 3: The equivalent block diagram of P: IP paral-
lel model

5 PSSL

PSSL (parallel software specification language) is
developed as a representation of the SDEVS formal-
ism. It supports various basic types including abstract
data type (ADT). Almost all keywords have one-to-

one correspondences with SDEVS to describe the for-
malism exactly. Moreover, the syntax of the language
1s as concise as possible for easy writing and reading.

Basic declaration and statements

PSSL basic declarations are used to define parallel
coordinates, variables, and events. It supports ba-
sic types such as integer, float as well as structured
types. Furthermore, an abstract data type (ADT) is
supported for a message type definition. To efficiently
denote scientific and engineering calculation problems,
PSSL supports full arithmetic and logical operators.

There are three statement types in PSSL. First,
test statements are used to identify last accessed ports
and current states. Second, PSSL also supports con-
ditional branch and loop statements. Finally, an as-
signment statement can be used to update variables.
These statements can be used at all characteristic
functions and action definitions.

o test statements : PORT, STATE
e control branch statements: IF, LOOP
e assignment statement

Definition and description sections

There are six definition sections in PSSL. We can spec-
ify parallel coordinates, message types, state variables.
I/O ports, and actions by using these sections.

® PARALLEL section defines a parallel coordinate.
® MESSAGE section defines message types.

® STATE_VAR section defines state variables.

e INPUT_PORT section.

o OUTPUT_PORT section.

® ACTIONS section defines actions.

The remainder non-definition sections are used to
describe SDEVS behavior of a model. The character-
istic functions of atomic model and the couplings of
coupled model are specified in these sections.

© EXTERNAL_TRANSITION section

® INTERNAL_TRANSITION section

® OUTPUT section

o TIME_ADVANCE section

¢ COUPLINGS section defines coupling informations.

Example of PSSL

Let’s consider the S:IP model specified in Section
3. We can describe PSSL code for the parallel model
without any parallelization details like Figure 5.



PARALLEL_MODEL ip
COORDINATE
m = 100;
MESSAGE
struct {
float image[m][10];
} Image_t;
INPUT_PORT
Image_t image_in;
OUTPUT_PORT
Image_t image_out;
STATE_VAR
int phase = O;
float Image[m][10];
EXTERNAL_TRANSITION
STATE phase == 0 :
PORT image_in :
1IN msg(image_in);
ACTION update_image(msg);
phase = 1;
END_PORT;
END_STATE;
INTERNAL_TRANSITIOB
STATE phase ==
phase = 0;
END_STATE;
OUTPUT
STATE phase == 1 :
NEV Image_t msg;
ACTION process(Image, msg);
OUT msg(image_out);
END_STATE;
TIME_ADVANCE
STATE phase == 1 : TIME 1; END_STATE;
STATE DEFAULT : TIME Infinity; END_STATE;
ACTIOES
FUNC update_image
ARG float[m][10];
BODY
// real calculations

EEND_FUNC;

// other action definitions

END_MODEL;

Figure 4: A PSSL code of image processing

6 Parallelization

Developed SDEVS specification is converted to
equivalent DEVS models for parallel execution. The
SDEVS-to-DEVS transformer reads PSSL codes. anal-
yses each models, then, generates P-DEVSim++
codes. During the transformation, all actions are con-
verted to C++ functions. An SDEVS atomic model is
converted to its DEVS model by adding C++ function
calls in its transition functions. For an SDEVS paral-
lel model, the degree of model decomposition should
be evaluated before model conversion.

At the first glance, it seems to be true that the
larger number of decomposition are taken, the more
parallelism we achieve. However, the maximum degree
of parallelism is decided by the following overhead of
target systems. In a shared-memory multiprocessor,
communication time to send or receive events between
models is negligible. So, the degree of decomposition
is determined by the the number of processors and the
overheads of system calls such as fork and RPC opera-
tion. If we concentrate on the distributed-memory ar-
chitecture, we must consider the communication over-
head of the system. In this paper, we only consider the
transformation in a distributed-memory architecture.

System parameters

The SDEVS-to-DEVS transformer use two system
parameters to efficiently parameterize the communica-
tion overhead. It is well known that basic communi-
cation setup time exists in real communications. The
time is mainly composed of software overhead and re-
mains constant for any data size. For a small packet
size, the setup time often takes a major factor in com-
munication time. So, we estimate the communication
time with a constant setup time and actual data trans-
mission time that is proportional to data size.

Definition 4.1 granularity factor p
A ratio between the unit communication and compu-
tation time of a target system.

_ teomm (7)

tcornp

Definition 4.2 Setup factor o
Communication setup time measured in unit commu-
nication time.

95}

(8)

tcomm



where S means average setup time.

Both of the factors are important measures because
they determine the grain size of parallel problems. We
think that it is a good approach not to take care of
the grain size of a problem.

Cost function

Using p and o, we devise a cost function to deter-
mine the degree of model decomposition. The cost
function is defined as the total estimated execution
time of transformed DEVS models. The estimated ex-
ecution time of a parallel model is composed of three
parts shown Figure 5. They are the time to distribute
and collect the events (DIST(i), COLL(i)), the time to
calculate data (COMP(i)), and the time to communi-
cate events with each decomposed models (D(l,i)).

M(0]

/ DATA [N/i] \ M[0]~M[i):
decomposed model
D(0,i)} MI[1] ot

0 0 for i coordinate

DATA[N/i]
1/ 1
DATA [N) 1:~1 Lwaen DATA [N]
M oaram/i)
i i

\n(i,i)t ..m/
DATA [N/1]

L J L J 1 J
communication computation communication
cost cost cost
DIST (i) COMP (i) COLL (1)

Figure 5: The block diagram to construct CF(i)

CF(i) = DIST(i)+ COLL(i)+ COMP(i) + IC(i)
= 2(3’.'J X teomm + S) X i+ (L:* X teomp)

+ Z[ D(l): X teomm
(9)

where, V; means the data size to compute along
the parallel coordinate i. We can get this value by
profiling all action functions used in a parallel model.
P; means total computation time along i coordinate.
D(1); represents the data size to transfer through link
l for i coordinate.

The equation further can be reduced to (10). The
equation shows that the first term is constant and the
second and the third terms have trade-off relation for 7.
So, there might exist an optimal 7 value that minimizes
the cost function.

CF(i)

ey =2Vitoxi)+ 1843 D) (10)

1
4
Example of parallelization

Consider the simple P:IP model shown in Section
3. An estimation of P, values are achieved through
profiling process_image action function. We use the
following model and system parameters.

«1={m)
e V,, =100, 100 data per m coordinate
e P, = 9000, 90 machine cycles per one calculation

> ,D()i=0,NoCV

ep=12
co=13
e Proc=14

The cost function is reduced to (11). The function
is minimized when m = 3.6. Therefore, we can get
the minimum execution time when the parallel model
i1s decomposed to three atomic models.

F i
CEm) 91004+ 2 xmy+ 290 gy
comm 3 12m

7 Experiments

An parallel FDE (finite difference equation) solver
1s specified in SDEVS and executed in P-DEVSim++
running on a KAICUBE, a hypercube computer devel-
oped at the KAIST CORE lab. The FDE is an equa-
tion to solve the two-dimensional Laplace equation.
When we solve the problem by the FDM (Finite Dif-
ference Method), it divides the problem domain into
finite squares. Equation (12) shows that the value of
any square ¢ is calculated from its four neighbors.

40zy = Gz—z' — Gy—y' — r4r — Gy+y =0 (12)

There are several methods for parallelizing the
FDM [7]. We use a domain decomposition technique
to parallelize the problem. In this case, mesh-like
nearest neighbor communications are produced from
data dependencies between the decomposed data. We
choose x, y parallel coordinates to parallelize the
problem. To consider data dependencies along x, y
coordinates, we also set two communications vectors:
(0, 1), (1, 0). The two CV of the FDE parallel model
generates a mesh coupling between decomposed mod-
els shown in Figure 6.
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Figure 6: The global SDEVS architecture of FDE

The figure shows the global model structure of the
problem. A SDEVS coupled model C:ENV has two
atomic models as its children. The A:INIT model ini-
tializes the input data. After that, it sends the data
to the P:FDE parallel model. The A:DISPLAY model ac-
cepts results from P:FDE model and displays the result.
The P:FDE parallel model accepts data, processes it,
then, sends to A:DISPLAY model.
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Figure 7: Speedup vs. various p values

The FDE example is executed for several decompo-
sitions with changing p. Figure 7 shows some impor-
tant results. First, an optimal decomposition exists
for a certain p. Second, the optimal decomposition
moves to smaller sizes for a system that has larger p.
In a high p system (p = 24), the expansion is meanless
for the FDE problem. Finally, the maximum speedup
point nearly follows the devised cost function in Sec-
tion 4.

The facts show that the SDEVS formalism specifies
software in well-defined semantics. It also properly
utilizes the inherent parallelism of the parallel soft-

ware. Furthermore, the devised cost function deter-
mines an optimal model decomposition for each par-
allel coordinates.

8 Conclusion

SDEVS is an extended DEVS formalism for describ-
ing parallel software in a hierarchical, modular man-
ner. We can describe an architecture-independent par-
allelism at the specification-level within the formalism.
An SDEVS atomic model represents a basic sequen-
tial software module. A coupled model has the hier-
archical structure of a software system and the cou-
pling information between models. A parallel model
is an abstracted model that contains scalable behavior
of a natomic model and a multicast coupling scheme.
Through the SDEVS-to-DEVS transformation, a par-
allel model is converted into DEVS models with model
decomposition. The amount of the decomposition is
automatically evaluated during the transformation us-
ing target system dependent parameters. An experi-
ment of a parallel FDM problem shows that SDEVS
can properly utilizes the inherent parallelism of a prob-
lem and generates correct results.
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