Implementation of a Distributed Problem Solving Framework based on Discrete
Event System Specification

Heung Bum Kim, Yeong Rak Seong, Tag Gon Kim and Kyu Ho Park

Computer Engineering Research Laboratory
Department of Electrical Engineering
Korea Advanced Institutes of Science and Technology
373-1 Kusong-dong Yusong-gu, Taejon 305-701,
Korea.

Abstract

Distributed Problem Solving(DPS) is a field of dis-
tributed artificial intelligence. In a DPS system, a prob-
lem is solved by a team of cooperating intelligent agents,
each intelligent agent having partial data and knowledge
of the problem and the problem solving environment. A
DPS system is a discrete event system. In the problem-
solving process, an intelligent agent randomly receives and
processes messages from the outside and other intelligent
agent; it also unpredictably activates knowledge sources in
itself.

This paper proposes a DPS framework based on DEVS
formalism specifying discrete event systems. The frame-
work consists of two components, AGENT and WHITE-
BOARD. The AGENT maintains several problem-solving
plans. It is able to solve many problems concurrently.
The WHITEBOARD keeps capability and loading factor
of AGENTSs and distributes messages during the solving
process. For verifying the proposed framework, an ex-
ample system with three intelligent agents was examined.
The results show that the DPS framework concurrently
solves problems, and each AGENT is maintained appro-
priate load.

1 Introduction

Distributed Problem Solving(DPS) is an area of dis-
tributed artificial intelligence. It examines how a loosely
coupled network of intelligent agents(problem-solving
nodes) can solve problems that are beyond the capabili-
ties of the agents individually[1]. Furthermore, although
an intelligent agent can solely solve the problems, such dis-
tributed /parallel processing is still useful for reducing the
overall finishing time. Each agent is a sophisticated sys-
tem that can modify its behavior as circumstances change
and plan its own communication and cooperation strate-
gies with other intelligent agents. Although DPS borrows
ideas from numerous fields, including distributed process-
ing, artificial intelligence, and the social sciences, it differs
significantly from each of those in the problems being at-
tacked and the methods used to solve them.

Many DPS systems have appeared over the past sev-
eral years in artificial intelligence and simulation fields.
They become more mature systems in various disciplines.

0-7803-2559-1/95 $4.00 © 1995 IEEE

Hearsay-II is a continuous speech understanding system
developed at Carnegie-Mellon University[2]. Its architec-
ture is better known than the speech understanding sys-
tem itself. McArthur et al. [3] has been studying the
problem of distributed air traffic control for several years.
This is a distributed planning problem consisting of a sim-
ulated airspace with planes. A distributed vehicle moni-
toring testbed builds a simulated environment with mov-
ing vehicles that generate sounds which can be picked up
by acoustic sensors[4]. The goal of the distributed problem
solver is to create a dynamic map of the area covered by the
sensors. The Contract Net proposed by Davis and Smith
is the most common message-based functionally accurate
negotiation-style protocol. An interesting practical exam-
ple is the use of contract nets in a flexible manufacturing
system by Parunak[5]. In simulation area, Nadoli[6] imple-
ments an intelligent manufacturing-simulation agent tool.
Most DPS systems proposed in the previous researches
cannot solve more than one problem concurrently. They
are not specified in modular, hierarchical manner.

The DPS system is a discrete event system. The intel-
ligent agent interacts with the outside through randomly
generated or arrived messages. It processes arrived mes-
sages with respect to its local information. Thus, knowl-
edge sources are unpredictably activated.

The DEVS(Discrete Event Systems Specification) for-
malism, developed by Zeigler[7], provides a methodology
for specifying complex discrete event systems in a hier-
archical, modular manner. It also provides a basis for
sound semantics for developing discrete event simulation
languages and environments. DEVSim-++ is an example of
such environment. It realizes the formalism in the object-
oriented environment of C+4+ [8].

In this paper, we propose a DPS framework based on
the DEVS formalism. Within the proposed framework,
many problems can be solved concurrently. Thus, an in-
telligent agent maintains several problem-solving plans.
Since the DEVS formalism separates the structure from
the behavior of the modeled system, the proposed frame-
work is classified by structure and behavior. Also, it is
specified in a modular, hierarchical manner. Currently, it
is implemented and operated in the DEVSim++ environ-
ment.

4178

The paper is organized as follows. Section 2 briefly
introduces the DEVS formalism. In Section 3, our DPS
framework is specified according to the DEVS specifica-
tion. For verifying the proposed framework, an example
system with three intelligent agents was examined in Sec-
tion 4. In this experiment, the problem is represented by
AND/OR tree. Section 5 states our conclusion.

2 DEVS Formalism

A discrete event system can be specified by Zeigler’s
DEVS formalism[7]. Within the formalism, one specifies a
discrete event system in two kinds of models: atomic model
and coupled model. An atomic model is an unbreakable
component of a system, which is represented as follows.

M= < X, S,Y,(Sint,(sea:ts /\, ta >
where

X : input events set, finite set;
Y : output events set, finite set;
S : sequential states set, finite set;

bext : Qx X — S

: external transition function;
bint 1+ S — S : internal transition function;
A: S — Y : output function;

te : S — Real : time advanced function.

where Q = {(s,€)|s € 5,0 < e < ta(s)} : total state
of M.

The first three elements, in the 7-tuple are the system’s
input, state set, and output, and the next four elements
give the constraints among the three.

A coupled model is a compound component consisting
of atomic models and/or coupled models. The coupled
model can itself be employed as a component in a larger
coupled model, thereby giving rise to the construction of
complex models with hierarchical structures. A coupled
model is represented as follows.

DN =< X,Y,M,EIC, EOC,IC,SELECT >
where

X : input events set, finite set;
Y : output events set, finite set;
M : set of all component models, finite set;

EIC : EICCDN.IN x M.IN
: external input coupling relation;

EOC : EOC C M.OUT x DN.OUT

: external output coupling relation;
IC: ICCMOUT x MIN
: internal coupling relation;

SELECT : 2™ —0 - M
: tie-breaking selector.

DEVSim++ is a realization of the DEVS formalism
and associated object-oriented hierarchical simulation al-
gorithms in C++ [8]. This environment supports modelers
in developing discrete event models using the hierarchical
composition technology within the DEVS framework.

3 DPS Framework

Problem solving in a DPS system is divided into three
phases. In the first phase, a larger problem is decomposed
into a set of smaller subproblems. This step is repeated
until all the subproblems can no longer be decomposed. In
the second phase, each subproblem is solved. During this
phase, intelligent agents communicate and cooperate with
each other. Answers are synthesized in the third phase.
Thus, sub-results are integrated to obtain a solution to
the overall problem. The aim of DPS is to resolve all the
phases effectively.

Three issues are involved in the construction of a DPS
system [9]: 1) problem distribution, 2) control mechanism,
and 3) communication policy. To solve problems effec-
tively, each subproblem is evenly assigned to each intelli-
gent agent. Otherwise, some extra useless communication
can be inserted. The control mechanism maintains a global
coherence during the problem solving process. Moreover,
computing loads should be distributed as even as possible
for higher overall performance. The communication policy
defines interaction between intelligent agents. Intelligent
agent must cooperate with others when none of them has
sufficient information to solve the entire problem. Such
information sharing allows the system to produce a con-
sistent answer.

Our DPS framework is designed under two important
assumptions. First assumption is that the communication
cost among cooperating intelligent agents is much smaller
than the computing cost to solve each problem. Occa-
sionally, a DPS system can be classified from general dis-
tributed systems by its abstraction level of data commu-
nicated. In a DPS system, the data communicated are
highly abstracted. Thus, the total amount of data com-
municated is not very large. Second assumption is that
problems are continuously entered into the DPS system
from the outside. Hence, several problems would be pro-
cessed concurrently in the proposed DPS system.

According to the above first assumption, a centralized
communication scheme is employed in our DPS framework.
In the scheme, all intelligent agents are connected to a
whiteboard, a centralized global coordinator. The white-
board is a counterpart of a blackboard. Generally, in a
DPS system, a blackboard is a passive data structure. It
stores tentative results and various environmental infor-
mations. Data are referred to by intelligent agents. A
whiteboard corresponds to an active blackboard. In ad-
dition to the features of a blackboard, it has the func-
tion of administering intelligent agents. Hence, it forwards
incoming messages to appropriate intelligent agents. To
determine such intelligent agents, a whiteboard maintains
two kinds of information about each intelligent agent that
is connected to whiteboard: capability and loading factor.

4179

WHITEBOARD

Figure 1: A Framework for DPS

in_dt out_dt
insol | pLANNERQ |24 0. PLANNER out_sol

SOLVERQ [24———d sOLVER
dong rea
(a) AGENT
from_out outs
in0 out0
. out in .

4 DISTRIBUTERQ DISTRIBUTER outd

done rea

(b) WHITEBOARD

Figure 2: Coupled models of DPS Framework

Capability specifies the types of knowledge(the list of solv-
able problems) which is determined at the beginning of
bootstrapping time; loading factor represents the current
computing load which is continuously set on the receiving
messages from the intelligent agent. By using the informa-
tion, a whiteboard selects an intelligent agent that has the
proper knowledge with minimal computing load.

As mentioned earlier, the proposed framework is com-
posed of two kinds of components: WHITEBOARD and
AGENT. WHITEBOARD is a whiteboard which stores
tentative results and various kinds of environmental in-
formation, and administers AGENTS. AGENT is an in-
telligent agent which stores knowledge for solving prob-
lems. Figure 1 shows the interconnection between the
components in the proposed DPS framework. As men-
tioned earlier, the framework employs a centralized archi-
tecture. Thus, all AGENTSs are connected to one WHITE-
BOARD. The two components are described as coupled
models of the DEVS formalism. There are two types of
components; WHITEBOARD and AGENT. Their internal
structures are shown in Figure 2. AGENT consists of four
components: PLANNERQ, PLANNER, and SOLVERQ

—— PLANNERQ
—— PLANNER
AGENT
— SOLVERQ
DPS L—— SOLVER

—— DISTRIBUTERQ
WHITEBOARD—

——DISTRIBUTER

Figure 3: Components of DPS Framework

and SOLVER. WHITEBOARD is composed of two com-
ponents: DISTRIBUTERQ and DISTRIBUTER. Figure
3 depicts the hierarchical construction of the entire frame-
work. In the tree, a leaf nodes is specified by atomic DEVS.
An internal nodes is specified by coupled DEVS.

The components share no variables and communicate
with others through message passing only. The message
has four types: question, answer, load, and initial. A
question type message holds the problem to be solved; an
answer type message contains the solution of a problem
previously requested. A load type message specifies the
current loading factor of an AGENT; and an initial type
message describes the capability of an AGENT.

The atomic models except PLANNER model are briefly
explained as follows:

o PLANNERQ: receive message from WHITEBOARD
or SOLVER, sort by priority, and if PLANNER is

free, send message to it.

o SOLVERQ: receive message from PLANNER, sort by
priority, and if SOLVER is free, send message to it.

o DISTRIBUTERQ: receive message from other
AGENTSs and the outside or DISTRIBUTER, sort by
priority, and if DISTRIBUTER is free, send message
to it.

o SOLVER: solve self-solvable problem by using knowl-
edge source.

e DISTRIBUTER: provide messages to appropriate
AGENT by using the information of capability and
load condition.

PLANNER is invoked when a message needs to be
planned. PLANNER has its own local meta-knowledge.
It searches the meta-knowledge for a suitable problem-
decomposition and then generates a problem-solving plan.

Figure 4 shows the DEVS modeling result of PLAN-
NER. PLANNER has one input port(“in”) and three out-
put ports(“out_dt”, “outsol”, “ready”). Each input port
is represented by an incoming arrow and each output port
is represented by an outgoing arrow. “in” is connected to
PLANNERQ. “out_dt”, “out_sol” and “ready” are linked
to WHITEBOARD, SOLVERQ, and PLANNERQ, re-
spectively. Also, PLANNER has seven state variables:

4180

“phase”, “buf”, “plan”, “knowledge”, “dt”, “sol”, and
“name”. Each state variable is shown in the small box
in Figure 4. The “phase” describes the current execution
mode of PLANNER. As shown in the phase transition and
output generation diagram in the outer box, PLANNER
has four phases: BEGIN, WAIT, PROCESS, and END.
Details of the phases will be explained later. “buf” is an in-
put buffer for saving incoming messages via “in”. “dt” and
“sol” are the output buffers for saving outgoing messages
via “out_dt” and “out_sol”, respectively. “plan” maintains
the problem-solving plans in the active problem solving
process. “knowledge” is meta-knowledge. Also, “name”
represents the name of PLANNER.

Now, let’s discuss the phase transition and output gen-
eration of PLANNER in Figure 4. In the figure, the ar-
rival of an input message is specified by “?”; generation
of an output message is represented by “!” and a dot-
ted line. For example, “?answer” means that a message
with the name of “answer” arrives at an input port of
PLANNER; “lout_dt” indicates that a message with the
name of “out_dt” is sent to the outside through an output
port of PLANNER. In the DEVS formalism, there are two
kinds of phase transition. External transition is specified
by solid arrows; internal transition is elaborated by dashed
arrows. For example, the solid arrow from WAIT to PRO-
CESS with the label “?answer” specifies the arriving of
“answer” message in WAIT phase. Phase transition may
depend on state variables, except “phase”. In such cases,
“@” character is used. For example, the dashed line from
END to WAIT with the label “@buf=empty” means that
if PLANNER executes internal transition while “buf” is
empty, phase is changed from END to WAIT.

Initially, PLANNER is in BEGIN phase. As soon as
the execution is started, PLANNER sends a message de-
scribing its capability toward WHITEBOARD through the
“out.dt” output port and changes its phase to WAIT.
When PLANNER receives an external event in WAIT, it
changes its phase to PROCESS. In “PROCESS” phase,
PLANNER has two operational modes: initial planning
mode and replanning mode. The operational mode is de-
termined by the type of the received external event mes-
sage. Thus, if the type is question, the mode is ini-
tial planning mode. Otherwise, the mode is replanning
mode. In the initial planning mode, this model generates
a problem-solving plan by using the information of meta-
knowledge. Based on the problem-solving plan, messages
are created. All unsolvable kernel subproblems are trans-
mitted to WHITEBOARD while self-solvable kernel sub-
problems are sent to SOLVERQ. In the replanning mode,
PLANNER deduces the problem-solving plan. If the con-
tents of a message are the results of a kernel subproblem,
PLANNER updates the meta-knowledge “knowledge”. If
the problem-solving plan is deducible according to the re-
ceived message, it is modified repeatedly. When a problem

is solved, PLANNER generates a message containing the
result of the problem, and transmits into WHITEBOARD.

Especially, if PLANNER has no plan to process, it sends a
“load-type” message describing the load factor to WHITE-

BOARD for balancing load and receiving new initial prob-
lem.

4 Experiments and Results

The proposed DPS system is implemented within the
DEVSim++ environment. To verify the proposed DPS
framework, an example DPS system with one WHITE-
BOARD and three AGENTs(AGENT1, AGENT2, and
AGENT3) is organized. All AGENTs are connected to
WHITEBOARD and communicates with it. WHITE-
BOARD is also in charge of communicating with the out-
side.

Figure 5 shows that a problem-decomposition tree used
in this experiment is an AND/OR tree. AND node is de-
duced when all its subproblems of AND node are solved.
OR node is deduced when one subproblem of OR node is
solved. In an AND/OR tree, each leaf node is a kernel
subproblem, and each internal node is an internal prob-
lem. In Figure 5, the tree consists of eight kernel subprob-
lems and six internal problems. For simplicity, we assume
that each AGENT has the same capability. In this case,
an AGENT can solve a problem without any cooperation
with other AGNETSs. In order to reduce the overall finish-
ing time, problems are cooperatively solved by the team
of AGENTs. However, the cost may vary with respect
to which AGENT solves the problem. The numbers at-
tached to each leaf node show the costs. For example, the
processing cost of A2 is 1, 2, and 3 when it is processed
by AGENT1, AGENT?2, and AGENTS3, respectively. By
the semantics of an AND/OR tree, the overall processing
cost of an AND node is the sum of its subordinates’ cost;
that of an OR node is the minimum of its subordinates’
cost. The number enclosed by parentheses represents the
optimal cost of the associated problem.

Problems are the inputs from the external environment
to the DPS framework. In this experiment, Probl, Prob2,
Prob3 and Prob4 are continuously generated and entered
into the experimental system at t = 10, 13, 512, and 515.
The problem types of Probl and Prob3 are Al; that of
Prob2 and Prob4 are A7.

The simulation is executed under the DEVSim++ en-
vironment. The proposed system solves the given prob-
lems well. Table 1 shows the problem solving history of
Prob2. When Prob2 is generated, Probl is being solved.
Thus, the two problems are solved concurrently. How-
ever, Table 1 does not show the problem solving history
of Probl. After receiving Prob2 from WHITEBOARD,
AGENT?2 makes the problem-solving plan for the problem.
First, since Prob2 is A7 type, it is decomposed into A9 and
A10, which are represented by Prob2.A9 and Prob2.A10,
respectively. The two subproblems are also decomposed.
Consequently, Prob2 is decomposed into Prob2.A9.A11,
Prob2.A9.A12, Prob2.A10.A13, and Prob2.A10.A14. For
the subproblems, four messages are generated and trans-
ferred to WHITEBOARD. At that time, because the load-
ing factor of AGENT?2 is higher than those of AGENT1
and AGENT3, WHITEBOARD decides to forward the
messages toward AGENT1 and AGENT3. After AGENT1

4181

PLANNER

tout_dt elaufén/on-empty ’
Ve

—din) , \
/ \] 1 -
fout dt out_so
‘;‘F_ @butsenpty 4 L7
S i -

fout_dt ~~ -7
tout_gol ¥

Iready

phasei buf |p1anl knowledge I dt | sol‘ namel

—— external transition function

~ - - - internal transition function

out_dt

out_sol

ready

.............. » output function

Figure 4: An Atomic Model of PLANNER

12/1110

AND Node

&

OR Node

16/17/18 19/20/21

15/14/13 24/23/22

Figure 5: Problem Decomposition Tree for Experiment

and AGENTS3 solve the problems, the results are returned
back to AGENT?2. Finally, AGENT?2 integrates the results
and finds out the overall solution.

Table 2 shows the statics of the overall experiment. In
the table, “Solved IA” is the intelligent agent which de-
duces the overall solution; “Task” and “Message” represent
the number of messages generated for solving the experi-
ment. The result shows that the solved order differs from
the generated order of problems.

5 Conclusion

In this paper, a DPS framework based on the DEVS
formalism is proposed. Also, the proposed framework is

Table 2: Results of Three AGENTSs

Solved Sequence Probl | Prob2 | Prob3 | Prob4
Solved AGENT AG2 AG1 AG2 AG1
Cost 34 15 32 37

Start Time 13 10 515 512

Solved Time 193 493 386 450
AGENT1 Task 0 21 4 6
Message 0 9 4 2
AGENT?2 Task 9 5 7 0
Message 5 5 7 0
AGENT3 Task 3 7 2 0
Message 3 7 2 0

implemented and executed in the DEVSim-++ environ-
ment. The framework is designed with two important as-
sumptions. First assumption is that the communication
cost among cooperating intelligent agents is much smaller
than the computing cost required for solving each prob-
lem. Second is that several problems would be processed
concurrently. According to the assumptions, a centralized
communication scheme is employed in which all intelligent
agents are connected to a whiteboard, a centralized global
coordinator. A whiteboard stores tentative results and
various environmental informations, forwards messages to
intelligent agents. To determine the most appropriate in-
telligent agent for a problem, a whiteboard maintains ca-
pability and loading factor of each intelligent agent which
is connected to the whiteboard. Capability specifies the
types of knowledge(the list of solvable problems) which is
determined at the beginning of bootstrapping time; load-
ing factor represents the current computing load which is
continuously set on receiving messages from the intelligent

4182

Table 1: Solving Sequence of Prob2 Problem in First Trial: (NAME[Y?,)

(cost)

[WHITEBOARD | _ AGENTI

l AGENT2

l

AGENTS3

J

Prob2%

Prob29;in

Prob2.A10.A139
Prob2.A10.A14%9
Prob2.A9.A11%
Prob2.A9.A129

Prob2.A10.A13%9

Prob2.A10.A13%

Prob2.A10.A149

Prob2.A10.A14%

Prob2.A9.A11%

Prob2.A9.A119

Prob2.A9.A12%

Prob2.A9.A129

Prob2.A10.A13(f‘20);so

Prob2.A10.A134

(20);1‘9

Prob?.A]O.Al4é3);so

ProbZ.Aloéo);re

Prob2.A9.A11 (Al 450

Prob2,A10.A14(A23);up

Prob2‘A9.A12(Ai7);so

Prob2.A9.All(Al4);re

ProbZ.AQa“;re

Prob24

(34)7¢

agent.

For verifying the proposed framework, an example sys-
tem with three intelligent agents was examined. In this
experiment, the problem is represented by AND/OR tree.
The results show that the DPS framework works well; it
is able to solve several problems concurrently. Moreover,
each AGENT is maintained with appropriate workload.

References

[1] Victor R. Lesser, “A retrospective view of FA/C dis-
tributed problem solving”, IEEE Transactions on Sys-
tem, Man, and Cybernetics, vol. 21, no. 6, pp. 1347-
1362, Nov./Dec. 1991.

L. D. Erman, F. Hayes-Roth, V. R. Lesser and D. R.
Reddy, “The hearsay-II speech-understanding system:
Integrating knowledge to resolve uncertainty”, Com-
puting survey, vol. 12, no. 2, pp. 213-253, June 1980.

D. McArthur, R. Steeb and S. Cammarata, “A frame-
work for distributed problem solving”, in Proc. 2nd
Nat. Conf. Artificial Intelligence, 1982, pp. 181-184,

E. H. Durfee, V. R. Lesser and D. D. Corkill, “Coherent
coperation among communication problem solvers”,
IEEE Transactions on Computers, vol. C-36, no. 11,
pp. 1275-1291, Nov. 1987.

H. Van Parunak, “Manufacturing experience with the
contract net”, in Proc. Distributed Artificial Intelli-
gence Workshop, 1985, pp. 67-91.

[s]

(6]

(8]

9]

4183

G. Nadoli and J. E. Biegel, “Intelligent manufacturing-
simulation agents tool(imsat)”, ACM transaction on
Modeling and Computer Simulation, vol. 3, no. 1, pp.
42-65, Jan. 1993.

Bernard P. Zeigler, Multifacetted Modelling and Dis-
crete Event Simulation, Academic Press, Orlando, FL,
1984.

Tag G. Kim, DEVSim++ User’s Manual: C++ Based
Simulation with Hierarchical Modular DEVS Models,
Computer Engineering Lab., Dept. of Electrical Engi-
neering, KAIST, 1994.

Alan H. Bond and Les Gasser, Reading in distributed
artificial intelligence, Morgan Kaufmann Pub., San
Mateo, CA, 1988.

