Realizing System Entity Structure in A Relational Database

Tag Gon Kim
Department of Electrical and Computer Engineering
Unviersity of Kansas
Lawrence, KS 66045

ABSTRACT

System entity structure (SES) developed by Zeigler is a
structural knowledge representation scheme that contains
knowledge of decomposition, taxonomy, and coupling of a
sKstem. Formally, SES is represented by a set of entities and
three relationships defined on entities in the set. This paper
describes a realization of SES in a relational database sys-
tem. The benefit of such arealization is that the system entity
structure provides the semantics for representation of sys-
tems structure while the relational database serves as an
implementation language. An example for constructing a
system entity structure, using a pseudo-SQL, for a com-
puter-based control system is given.

L INTRODUCTION

In large scale modeling and simulation for systems
design, the modeler often employs a multifaceted modeling
methodology that deals with the multiplicity of facets for a
real world system in a coherent manner. Within the model-
ing methodology, the modeler represents a family of pos-
sible alternative configurations of a system to be modeled in
an orFanized form. As design objectives and requirements
are clarified, the modeler selects a combination of com-
ponents as a design candidate from the family of configura-
tions and evaluate it with respect to design objectives
(Rozenblit et. al., 1990).

The system entity structure formalism developed by
Zeigler (Zeigler, 1984) is a representation scheme For sys-
tems structure that has been used as a formalism for the
multifaceted modeling. It contains knowledge of decom-
position, taxonomy, and coupling of a system. The operation
prune defined on the system entity structure serves as a basis
to select a candidate out of possible alternatives for evalua-
tion. By combining a simulation modeling environment such
as DEVS-Scheme (Kim and Zeigler, 1990), the system entity
structure serves as a model base management system for
simulation models in systems design (Kim et. al., 1990). In
fact, a realization of such a model base management system
called ESP-Scheme (Kim and Zeigler, 1989% is in place in
which a LISP dialect called Scheme is employed as an
implementation language.

This paper describes a realization the system entity
structure in a relational database system. The benefit of such
arealization is that the system entity structure provides the
semantics for representation of systems structure while the
relational database serves as an implementation language.
Thus, the realization is a model base management system in

a relational database that can be used as a multifaceted
modeling and simulation tool for complex systems design.

2.SYSTEM ENTITY STRUCTURE FORMALISM

A system entity structure (SES) is a representation
scheme for the structure of a system. It has been graphically
represented as a labeled tree with attached variable types
that satisfies five axioms— alternating mode, uniformity,
strict hierarchy, valid brothers, and attached variables.
Detail description of the axioms is beyond of the scope of
this paper and is available in (Zeigler, 1984).

Within the system entity structure formalism, a real
world system can be represented by a set of entities and
three relationships between entities. An entity within the
entities set represents a component of the real system. Each
such entity has one or more aspect and/or specialization. An
aspect is a decomposition relationship between an entity
and its subentities in which the subentites represent sub-
compoments of a component represented by the entity. A
specialization is a taxonomic relationship between a general
entity and specialized ones. Associated with an aspect is a
coupling relationship between a pair of entities with a desig-
nated ports pair. There is a special aspect relationship called
a multiple aspect. A multiple aspect is an one-to-many
relationships between an entity and its homogeneous sub-
entities. Thus, a component represented by an entity having
a multiple aspect consists of a collection of homogeneous
components. We call such an entity a multiple entity.

3. RELATION AND RELATIONAL DATABASE

We briefly discuss concepts of mathematical relation on
which a relational database system is based. The concepts
discussed here are used in discussion of compatibility be-
tween relation and the system entity structure formalism.

3.1. Relation

The term “relation” is essentially a mathematical term
of a table. Formally, a relation R on sets D1, Ds,...., Dy is
defined as:

R = {(v1,v2,..., Vn) | v € D1,v2 € D3,..., vy € Dy }

where, the sets D1, Da,..,Dp are called domains of attributes,
and (v1, v2,..., Vn) is called a tuple. Since a relation is a
mathematical set, the order of tuples and attributes in rela-
tions has no significance. From now on, we use relation and
table interchangeably.

As mathematical sets, relations possess the following
properties (Date, 1990):

1. Tuples are not duplicated.

2. Tuples are unordered.

3. Attributes are unordered.

4. All attribute values are atomic.

The properties 1, 2, and 3 follow from the properties of
amathematical set. The property 1 implies that there always
exists a primary key in a relation since tuples are unique. To
satisfy the Eroperty 4, the value at every (row, column)
position within the table can not be a list. A relation satisfy-
ing this condition is said to be normalized.

3.2. Relational Database

A relational database is a database that is perceived by
its users as a collection of tables. More precisely, tables in
the relational database are time-varying normalized rela-
tions of assorted degrees (Date, 1990). In the relational
database, information about the real world can be repre-
sented by a collection of entities relations and a collection
of relationships relations on the entities. It is known that
there is nothing that can be represented by a hierarchy that
cannot be represented by relations alone. More importantly,
organizing information about the real world using relations
is much simpler than using a hierarchy.

The simplicity follows from the fact that relations do not
employ links connecting one information to another and
that there are no ordering in relations. The links in the
hierarchical structure can be represented by the relation-
ships in the relational structure. In fact, the hierarchical
structure fundamentally requires certain additional data
access operators which are not required for the equivalent
relational structure. Thus, the links of the hierarchical struc-
ture certainly do not add any power but serve only to add
complexity. Ordering in operations for constructing and/or
destructing a hierarchy also serves to add complexity in the
hierarchical system.

4. SES AS SEMANTICS FOR SYSTEM STRUCTURE

We now examine how a system entity structure can be
represented by a relational database. Based on the discus-
sion of the system entity structure and the relation/relational
database, we see that a system entity structure can be real-
ized in a relational database. In fact, semantics of the system
entity structure seems to be highly compatible to the under-
lying relational model of the relational database. Note that
the system entity structure bears no relation to the Entity-
Relationship Data Model proposed by Chen (Chen, 1976).
However, attempts for using the system entity structure in
database design have been made (Higa, 1988) and the
results of such attempts have shown to be superior to con-
ventional schemes.

Let us precisely examine the compatibility between the
system entity structure and the relational model. There
exists a correspondence between representation of a system
using the system entity structure and representation of the
real world using relations. As we discussed earlier, a system

entity structure can be represented by a set of entities and
three relationship sets, namely, an aspects relationship set,
a specializations relationship set, and a couplings relation-
ship set. Since the entities within the set represent com-
ponentsin a system, the set can be represented by an entities
relation in a relational system. The aspects set, each element
of which represents a relationship between a component
and its subcomponents in a system, can be represented by
an aspects relationship relation in a relational system.
Similarly, the specializations and couplings sets can be rep-
resented by an specializations relationship relation and an
couplings relationship relation, respectively. Thus, a system
entity structure can be represented by a set of the four
relations described above.

5. REALIZING SES IN RELATIONAL DATABASE

To realize a system entity structure in a relational
database, we first give relational data representation for the
system entity structure and then define operations on such
relations. As explained earlier, relational data repre-
sentationis to define four relational tables for a system entity
structure. Operations on such relations include cre-
ate/destroy taglcs, update tables, and queries on tables.

5.1. Relational Data Representation

A table in a relational system consists of a row of column
headings and zero or more rows of data values. A systcm
entity structure in a relational database consists of four
relations: the entities relation, the aspects relationship

ASPRS) relation, the specializations relationship
gSPECRS; relation, and the couplings relationship
(COUPRS) relation.

Formally, a system entity structure (SES) in a relational

system is defined as:

SES = < ER, ASPR, SPECR, COUPR >

where ER : ENT relation
ASPR : ASPRS relation
SPECR : SPECRS relation
COUPR : COUPRS relation
with constraints:
ASPRS = { (ej, ¢j) gei, ej € ENTSET }
SPECRS = { (e, €1 gek, el € ENTSET }
COUPRS = { (eém, €n) | €m, en € ENTSET }

For eachrelation defined above, we define column head-
ings with asscociated data types and a primary key. The
entities relation consists of three column headings, namely,
EntNumber (entity id number), EntName (entit nameg,
and IsComponent (is this entity a component of another
entity?). Data types of EntNumbe, EntName, and Is-
Component are string, string, and boolean, respectively.
Since EntName may not be unique from the axiom for the
system entity structure, we use EntNumber as a primary key
for the entities relation.

We define three column headings for the aspects
relationship relation as AspName (aspect name), EntName

(entity which has this aspect), and CompEntName (entity
which is under this aspect). Data type of AspName is string
and the primary key of the aspects relation is (AspName,
CompEntName).

The column headings for the specializations relationship
relation will be SpecName (specialization name), EntName
entity which has this specialization), and SpecEntName
entity which is under this specialization). SpecName is of
type string and (SpecName, SpecEntName) is used as the
primary key of the specializations relationship relation.

Finally, the couplings relationship relation has four
column headings. They are AspName (aspect which has this
couplings relationship), FromEntName (entity name for
coupling source), ToEntName (entity name for coupling
destination), FromPortName (port name associated with
FromEntName), and ToPortName (port name associated
with ToEntName). All headings are of type string and the
primary key for the couplings relationship relation is (From-
EntName, FromPortName%.

5.2. Relational Operations

To define four relations for a system entity structure
discussed above, there should be means to construct and
destruct the corresponding four tables. For this, we define
constructor CREATE and destructor DESTROY. The
operation CREATE creates a table with the name of table,
the column headings, and the primary key. The operation
DESTORY destroies existing tables.

To manipulate created tables, we define three basic
operations, namely, UPDATE, DELETE, and INSERT
and one query SELECT. While the query does not change
the contents of tables, the three operations change the state
of tables. The operations UPDATE and DELETE modifies
and deletes all records in a table, respectively. The opera-
tion INSERT inserts records into a table having the
specified values for the specified fields. Finally, the query
SELECT on a table retrieves specified fields from the table
that satisfy the specified condition. It should be noted that
the result of the query SELECT forms another relation. The
query SELECT can be used to express various kinds of join
operations in a relational database.

5.3. Data Consistency in Operations

We now discuss the maintenance of data consistency
followinF the three operations defined above. It is known as
adifficult problem to find a set of rules to maintain such data
consistency in a relational database. The difficulty follows
from that fact that the semantics and consequences of
operations, such as deleting and updating, are not clearly
defined. We shall show that the system entity structure
formalism provides the sounder semantics for the main-
tenance of data consistency.

The consequences of the operations UPDATE,
DELETE, and INSERT on the entities relation may require
other operations on the entities and/or relationships rela-
tions. The reason is that there may be a relationship between
one entity on which such operations are applied and

another. For example, deleting a tuple in the entities relation
may require deleting some other tuples in the relation. At
the same time, certain tuples in the relationships relations
whose entity is related to the deleted entity need to be
deleted. In general, the consequences of such operations
depend on types of operations and kinds of relations on
which the operation is applied. Here we shall discuss con-
sequences of each operation defined on the relations repre-
senting a system entity structure.

The operation UPDATE, if applied to entities on the
entities relation, results in the operations that should be
applied on the relationships relations. There are two dif-
ferent cases in the resulting operations. To be specific, if the
updated value is not part of an entity primary key, no
consequence results in. However, if the value is part of an
entity primary key, changes of the entity primary keys in all
relatcg relationship relations, namely, aspects, specializa-
tions, and couplings relations, would be required.

Deleting an entity tuple using the operation DELETE
results in deleting any entity tuple whose entity is in the
aspect relationship with the deleted entity. At the same time,
the relationship tuples in the relationships relations as-
sociated with the deleted entity should be deleted. This
procedure needs to be applied recursively.

5.4. Pseduo-SQL for Expressions

We employ SQL (Structured Query Language)-alike
formats to express the operations described above. We call
such formats the PSQLES (Pseudo SQL for Entity Struc-
ture). Expressions in the PSQLES can be mechanically
translate)g) into a SQL available in a relational database
system. Table 1 shows formats for all operations including
constructor and destructor. In the following PSQLES for-
mats, we use the capital letters as key words and the [] as
optional. The formats below will be used in the example to
be given in section 6.2.

Table 1. PSQLES Formats for Expressions

CREATE TABLE table-name
{ column-name : data-type [; column-name : data-type].... ;
PRIMARY KEY : = primary-key };

DESTROY TABLE table-name [; table-name];

SELECT column-name [; column-name]
FROM TABLE table-name
[WHERE condition];

DELETE ROW
FROM TABLE table-name
WHERE condition;

INSERT [{ column-name [; column-name]... }]
INTO TABLE table-name
WITH VALUES { literal [; literal]};

UPDATE TABLE table-name

VYITl]-i column-name : = expression [; column-name : = expres-
sion]...

[WHERE condition];

5.5. Pruning SES

As we mentioned earlier, the operation prune on a SES
is a procedure to select a candidate design out of many
possible alternatives for evaluation with respect to design
objectives. Fig. 1 outlines the pruning operation for a SES
realized in a relational database.

Prune (SES = < ER, ASPR, SPECR, COUPR >)
begin
create four relations for pruned entity structure PES
let PES = < ER’, ASPR’, SPECR’, COUPR’ >
if ER has one tuple then
select the entity tuple and insert it in ER’
return PES
else {
select a tuple of an entity, say ENT, from ER
insert the tuple in ER’
ENTSET : = { ENT }
while ENTSET is not empty
call the first element of ENTSET ENTi
select a tuple of one aspect, say ASPj, under ENTi
from ASPR
insert the tuple in ASPR’
select all tuples of entities from ER that are re-
lated to ENTi on ASP;j relationship
select all tuples of couplings from COUPR as-
sociated with ASPj
insert the tuples of entities in ER’
insert the tuples of couplings in COUPR’
ENTSET : = (ENTSET - {ENTi}) U { all en-
tities related to ENTi on ASP;j }
call ENTi current entity
while current entity has a specialization
select a tuple of an entity, say ENT], from
SPECR that is related to the current entity on
the specialization
rename ENTi to ENTj in all tuples having ENTi
in ER’
rename ENTi to ENTj in all tuples having ENTi
in COUPR’
call ENTj current entity
end while current entity
end while ENTSET
return PES }
end Prune

Fig. 1. Pruning SES in Relational Database.

6. STEPS FOR BUILDING SES AND EXAMPLE

We present procedures for building a SES for a system.
We apply the procedure to constructing a SES for a com-
puter-based control system the structural specification of
which is described informally.

6.1. Steps for Building SES

We realize a system entity structure in a relational
database system in the following six steps.

1. identify the entities set.
2. identify the relationship sets defined on the entities set.

2.1. identify the decompositions relationship set.

2.2. identify the taxonomies relationship set.

2.3. identify the couplings relationship set.
3. identify semantic information for the relationship sets.

3.1. identify subentities for an entity for each decomposi-
tion in the decompositions relationship set.

3.2. identify specialized entities for a general one for each
specialization in the taxonomies relationship set.

3.3. identify a pair of entities for each coupling in the
couplings relationship set.
4. define the attributes and their domains.
5. decide primary keys for the entity relation and relation-
ship relations.
6. realize the entity and relationship sets into relations.

6.1. the entities set into the entities relation.

6.2. the decompositions relationship set into the aspects
relation.

6.3. the taxonomies relationship set into the specializa-
tions relation.

6.4. the couplings relationship set into the couplings rela-
tion.

We now present an example of constructing a SES in a
relational database based on the above procedure.

6.2. An Example

Consider the following informal description of system
structure for a computerized, real-time control system
called a CNTL. We intentionally do not include functional
specification of each component in the CNTL.

“The CNTL consists of a PLANT, a SENSOR, a
POWER_AMP, and a CONTROLLER. The
PLANT tobe controlled can be either aMOTOR
or a AIRCON. Therefore, the SENSOR may be
either a THERMOMETER or a SPEED-
METER. A PERSONAL COMPUTER (PC), a
A/D_CONVERTER, and a D/A_CON-
VERTER constitute the CONTROLLER. Cou-
pling scheme of the CNTL is as follows. The
PLANT has a connection to the outside world
through the CNTL. The PLANT’s output port
“current_value” is connected to the input OF the
SENSOR “value_in”. The SENSOR transmits
the value throughits output port “measured_out”
to the CONTROLLER’s input port “in”. The
CONTROLLER sends the received value to the
AD_CONVERTER throughits input port “anal-
ogy_in.” The output port of the AD_CON-
VERTER “digital_out” is connected to the PC’s
input port “digital_in.” The PC’s ouput port
“digital_out” is connected to the
DA_CONVERTER’s input port “digital_in.”
The DA_CONVERTER’s output port “anal-

ogy_out” is connected to the CONTROLLER’s
output port “out”, which then is connected to the
POWER_AMP’s input port “analogy_in.” The
POWER_AMP’s output port “power_out” is

connected to the input port “power_in” of the
PLANT”

Based on the above informal description of the CNTL
structure, we can easily identify the entities set and the
relationships sets. The entities set consists of all system
components described above including specialized entities.
The specification explicitly indicates semantics information
for all relationships in the three relationships sets. For
example, the CONTROLLER is related to the AD_CON-

CREATE TABLE ER

{ EntNumber : string; EntName : string; IsComponent : Boolean;
PRIMARY KEY : EntNumber };

INSERT INTO TABLE ER WITH VALUES { ENT1; CNTL; FALSE };

INSERT INTO TABLE ER WITH VALUES { ENT2; PLANT; TRUE };

INSERT INTO TABLE ER WITH VALUES { ENT3; SENSOR; TRUE };

INSER;’ INTO TABLE ER WITH VALUES { ENT4; POWER_AMP;

TRUE };

INSERT INTO TABLE ER WITH VALUES { ENT5; CONTROLLER;

TRUE };

INSER#’ INTO TABLE ER WITH VALUES { ENT6; MOTOR; TRUE };

CREATE TABLE ASPR
{ AspName : string; EntName : string; CompEntName : string;
PRIMAEY KEY : (AspName, CompEntName) };

INSERT}INTO TABLE ASPR WITH VALUES { CNTL_ASP; CNTL;

PLANT };

g\lSEs%r ll\iTO TABLE ASPR WITH VALUES { CNTL_ASP; CNTL;
ENSOR };

INSERT INTO TABLE ASPR WITH VALUES { CNTL_ASP; CNTL;

POWER_AMP };

CREATE TABLE SPECR
{ SpecName : string; EntName : string; SpeEntName : string;
PRIMARY KEY : (SpecName, SpecEntName) };

INSERT INTO TABLE SPECR WITH VALUES { PLANT_SPEC;
PLANT; MOTOR };
INSERT INTO TABLE SPECR WITH VALUES { PLANT_SPEC;
PLANT; AIRCON };

CREATE TABLE COUPR

%AspName : string; FromEntName : string; FromPortName : string;
oEntName : string; ToPortName : string;

PRIMARY KEY : (FromEntName, FromPortName) };

INSERT INTO TABLE COUPR WITH VALUES { CONTROLLER_ASP;
CONTROLLER; in; AD_CONVERTER; in};

INSERT INTO TABLE COUPR WITH VALUES { CONTROLLER_ASP;
DA_CONVERTER; analog_outout; CONTROLLER,; out};

INSERT INTO TABLE COUPR WITH VALUES { CONTROLLER_ASP;
AD_CONVERTER,; digital_out; PC; digital_in }

Fig. 2. PSQLES for SES.

EntNumber EntNaname IsComponent

Ent1 CNTL False

Ent2 PLANT True

Ent3 SENSOR True

Ent4 POWER AMP True

Ent5 CONTROLLER True

Ent6 MOTOR True

Ent7 AIRCON True

Ent8 THERMOMETER True

Ent9 SPEEDMETER True

Ent10 AD_CONVERTER True

Ent11 DA_CONVERTER True

Ent12 PC True

AspName EntName CompEntName
CNTL_ASP CNTL PLANT
CNTL_ASP CNTL SENSOR
CNTL_ASP CNTL POWER_AMP
CNTL_ASP CNTL CONTROLLER
CONTROLLER_ASP CONTROLLER AD_CONVERTER
CONTROLLER _ASP CONTROLLER DA_CONVERTER

CONTROLLER_ASP

3

SpecName EntName SpecEntName
ﬁ&Ni SPEC PCANT Wl%iUR

CONTROLLER PC

PLANT_SPEC PLANT AIRCON
SENSOR_SPEC ~ SENSOR THERMOMETER
SENSOR SPEC _ SENSOR SPEEDMETER

Fig. 3. Relations for SES.
ER, ASPR, and SPECR from Top Down.

VERTER, the PC, and the DA_CONVERTER on its
aspect relationship. Attributes, their domains, and a
primary key for each relation are already described in sec-
tion 5.1. Tﬁe sequences of the PSQLES shown in Fig. 2
realizes the system entity structure for the CNTL. Relations
representing the system entity structure are given in Fig. 3
except for the couplings relation which we did not include
just because of space.

7. CONCLUDING REMARKS

The system entity structure formalism was represented
by a collection of four relations and realized in a relational
database. The four relations were the entities relation, the
aspects relationship relation, the specializations relation-
ship relation, and the couplings relationship relation. Rep-
resenting the system entity structure as such relations made
it possible to employ the well-established relational
database technology as an implementation tool. Thus,
operations and queries defined on a relational database can
be used for manipulating a system entity structure.
Moreover, efficiency in saving anc{ retrieving a system entity
structure in an external storage can be inherited from the
underlying relational database. By combining an ap-
propriate simulation environment, the realization shown in
this paper would serve asa powerful model base manage-

ment system using the relational database technology. Such
combination would provide a powerful environment for
complex systems design based on the multifaceted modeling
and simulation methodology.

ACKNOWLEDGEMENT

This investigation was supported by University of Kan-
sas General Research allocation #3779-20-0038.

REFERENCES

Chen, P.P (1976), “The Entity-Relationship Model —
Toward a Unified View of Data,” ACM Trans. on
Database Systems, vol. 1, no. 1, pp. 9-36, March.

Date, C.J. (1990), An Introduction To Database Systems:
Volume I. Reading, MA: Addison-Wesley Publishing
Company, Inc.

Higa, K. H. (1988), “End-user Logical Database Design:
The Structure Entity Model Approach”, Doctoral Dis-
sertation, MIS Dept., University of Arizona.

Kim, Tag Gon and B.P. Zeigler (1990), “The DEVS-Scheme
Simulation and Modelling Environment,” Chapter 2 in
Knowledge Based Simulation: Methodology and Applica-
tion (eds: Paul A. Fishwick and Richard B. Modjpeski)
Springer Verlag., Inc.

Kim, Tag Gon et. al. (1990), “Entity Structuring and Model
Base Management,” IEEE Trans on Systems, Man and
Cybemnetics, vol. 20, no. 5, pp. 1013 - 1024, Septem-
ber/Octorber.

Kim, Tag Gon and B.P. Zeigler (1989), “ESP-Scheme: A
Realization of System Entity Structure in a LISP En-
vironment,” in Advances in AI and Simulation, Simula-
tion Series, vol. 20, no. 4, pp. 135-140, March.

Rozenblit, Jerzy et. al. (1990), “Knowledge-Based System
Design/Simulation Environment: Foundations and Con-
cepts,” Journal of Operations Research Society, vol. 41,
no. 6, pp. 475-489.

Zeigler, B.P. (1984), Multifaceted Modelling and Discrete
Event Simulation. London, UK and Orlando, FL:
Academic Press.

