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Abstract
This paper presents a parallel discrete event simulation
(PDES) environment using graphics processing unit (GPU)
to simulate cellular models described by the discrete event
system specification (DEVS). The DEVS is a general sys-
tem specification, and it helps the modeler to verify and val-
idate the model. The parallel simulation algorithm for sim-
ulating the DEVS model has been well studied, and based
on the simulation algorithm, the operations of DEVS cellu-
lar models and their relative simulators are processed in par-
allel using the GPU. The algorithm of managing the event-
list and routing output events in the DEVS simulation is re-
vised to be processed in parallel considering the features of
the GPU. The performance analysis and the experimental re-
sult are provided to demonstrate the increased speed of the
proposed PDES using the GPU as compared to the PDES us-
ing the CPU in a large-scale cellular model simulation.

1. INTRODUCTION
To analyze a physically or chemically homogeneous sys-

tem, we describe the system as mathematical equations
[1][2]. Unfortunately, the mathematical equations are some-
times too complex to solve, or too difficult to find in analyzing
a complex system. In that case, a simulation-based approach
could be an alternative method [3][4]. In a simulation-based
approach to a homogeneous system, the system is expressed
as cellular models instead of obtaining a general solution, and
the description of each model is based on spatial and temporal
behavior in a local space or entity. The entire simulation pro-
ceeds as each cellular model interacts with adjacent models,
and one of the example following this approach is the cellular
automata simulation [5].

To guarantee and verify the simulation’s correctness, mod-
eling of the target system should be based on a formal sys-
tem specification, called formalism. Among several system
specifications, the DEVS formalism is a general system spec-
ification from generic dynamic systems theory and has been
applied to both continuous and discrete phenomena, so it is
widely used and applicable [6]. Using the DEVS formalism,
a homogeneous system can be described as the DEVS cellular

models in Fig 1.
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Figure 1. A homogeneous system is represented by cellular
models using DEVS formalism. The DEVS cellular models
interact by sending and receiving the output and input. The
state of each cellular model is changed by its own decision or
when receiving its neighbors’ events

To describe a homogeneous system in more detail, a large
number of cellular models should be employed which de-
mands a high performance simulation technique. One of
the most well-known techniques is parallel simulation[7]. In
a traditional parallel simulation, the simulation is executed
on multiple central processing units (CPUs) or a multi-core
CPU, but in this paper, we simulate the cellular models using
the graphics processing unit(GPU).

The GPU is primarily dedicated to computing the graphics
calculation. Recently, the GPU has emerged as a powerful
many-core processor as the performance of the GPU grows
rapidly. GPU corporations also provide the better application
programming interface (API), like computing unified device
architecture (CUDA)[8] by NVIDIA or ATI stream by AMD.
In turn, this causes developers be more attracted to the GPU
when solving the compute-intensive problem.

In this paper, we present a parallel discrete event simulation
(PDES) environment to simulate the DEVS cellular models
using a GPU. The parallel simulation algorithm for the DEVS
model has already researched [6][9], and following the veri-
fied DEVS simulation algorithm, the operations of the cellu-
lar models and their relative simulators, which are the compo-
nents of the simulation engine are computed in parallel using
the many-cores of a GPU. Moreover, the algorithm of routing
events and event-scheduling in the DEVS simulation algo-
rithm is revised to be processed in parallel using the GPU.
To analyze and show the benefits of PDEVS using the GPU,
we compared the simulation performance with PDEVS using
several cores in the CPU through an experiment. Concerning



the experiment, the simulation target is a fire-spreading phe-
nomenon, which is an example of a homogeneous system.
A PDES environment using the GPU was developed using
CUDA, and the PDES environment using the CPU was de-
veloped using OpenMP[10].

The rest of the paper is organized as follows. In Sections 2
and 3, we describe some works related to this paper and the
backgrounds of the CUDA and DEVS simulation algorithm.
Section 4 describes the parallel simulation using the GPU. In
Section 5 and 6, we analyze and evaluate the performance of
the PDES using the GPU compared to the CPU. Section 7
will conclude the paper.

2. RELATED WORK
The DEVS simulation of the cellular model has been stud-

ied to analyze complex homogeneous system[11]. In a typical
DEVS cellular model simulation, the number of the cellular
models is far too large for detailed simulation, and it requires
a high-performance simulation technique. The technique to
improve the performance of the DEVS simulation has been
studied in two approaches. The first approach is improving
the DEVS simulation algorithm, and the second approach is
increasing the number of computing processors or machines
through parallel and distributed DEVS simulation.

Examples of the first approach includes flattening the hier-
archical structure of the models[12] or using a fast scheduling
algorithm which deal with active models only by tracking the
active models[13] or eliminating the unnecessary components
during simulation execution[14].

In the second approach, both parallel and distributed DEVS
simulations improve the simulation performance. Due to the
interaction overhead on the network, distributed DEVS sim-
ulation is not as adequate for high-performance simulation as
the parallel DEVS simulation. However, it has advantages to
integrate geographically distributed simulators, so it has been
actively researched using various middlewares[15],[16],[17].
In parallel DEVS simulation research, parallel simulation
protocols have been mainly researched[18],[19].

Recently, the novel and powerful compute-intensive pro-
cessors like the Cell processor has emerged. Qu and
Gabriel[20][21] proposed a simulation environment for par-
allel DEVS simulation considering the architecture features
of the Cell processor. In this paper, we proposes a simulation
environment for parallel DEVS simulation using the GPU,
which is one of the emerging compute-intensive processors.
The purpose of both researches is to optimize and map the
parallel DEVS simulation into the specific processor, but due
to the different architecture features between the Cell proces-
sor and the GPU, the DEVS simulation algorithm is differ-
ently modified and mapped to each hardware.

Park and Paul[22] proposed the GPU-based framework for
the discrete event simulation using the parallel event-list. The

proposed PDES environment in this paper also utilizes the
GPU. However, the environment follows the DEVS simula-
tion algorithm, and in our event-scheduling approach of the
environment, the parallel event-list is unnecessary.

3. BACKGROUND
3.1. CUDA Programming Overview

CUDA is the parallel computing framework developed by
the NVIDIA corporation. CUDA provides the APIs, which al-
low the developers to easily access GPU programming with-
out having technical GPU knowledge.

The CUDA kernel manages the threads in a two-level hier-
archy, and assigns threads to GPU multiprocessors, as shown
in Fig. 2.
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Figure 2. Developers manages the organization of threads
by specifying the grid and block size. Several blocks are
mapped to a multiprocessor, which consists of multiple cores,
and the threads in a block are divided into 32 threads when the
blocks are scheduled and executed in each multiprocessor.

The number of the assigned blocks per multiprocessor is
determined by the CUDA kernel considering the amount of
the memory needed for the simultaneous execution of the
blocks, but the number is limited to 8 blocks. Once a block is
assigned to a multiprocessor, the threads in the block are fur-
ther divided into 32-threads units called warps. These warps
are the unit of thread scheduling and execution in a multipro-
cessor for each clock cycle. Each multiprocessor is operated
independently of the other multiprocessor; this enables the
execution of CUDA to embrace the single instruction mul-
tiple thread (SIMT) paradigm[23], which is similar to the
execution model of single instruction multiple data (SIMD).
The SIMT-based paradigm allows divergence in the execution
path between multiprocessors.

CUDA threads access multiple memory spaces, such as



shared, and global memory (Fig. 2) to read and write data.
The shared memory is only accessible by threads in a block,
and the global memory is accessible by all threads in CUDA.
The shared memory space is much faster than the global
memory spaces because the shared memory is on-chip, but
global memory is on the device memory.

3.2. DEVS Simulation Algorithm Overview
Originally, the DEVS formalism began with classic DEVS.

Several years later, a Parallel DEVS was introduced to re-
move the constraints of sequential processing and enable the
parallel execution of models. In this paper, we used Paral-
lel DEVS, not classical DEVS, for the parallel simulation. In
DEVS formalism, there are 2 classes of models, the atomic
model and the coupled model. In modeling a homogeneous
system, cellular models are atomic models. The network of
these cellular models constitutes a coupled model that main-
tains the information of the coupling relationships of cellular
models.
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Figure 3. A homogeneous system is expressed as the cellu-
lar models, which correspond to the atomic model and one
coupled model that has the information about the network of
the cellular models. The atomic models and coupled model
are carried out by simulators and a coordinator by abstract
simulators, which consist of simulators and a coordinator.

There are abstract simulators called simulation engines that
execute models to generate their dynamic behavior. The ab-
stract simulators consist of the coordinator and simulators,
and the relationship between the models and the abstract sim-
ulators is shown in Fig. 3.

Based on the DEVS simulation algorithm[9][13], the coor-
dinator executes the following code every simulation cycle:

AllSimulator.GetNexttN();
tN = ComputeGlobalTN();
imminentSimualtor.GenerateOutput(tN);
influenceeSimulator.DeliverOutput();
AllSimulator.StateTransitionOrNot(tN);

Detailed descriptions of each procedure in the upper code
are as follows:

1. The coordinator asks all simulators about each next
scheduled time, denoted by tN, which is determined
based on the state of its cellular model.

2. The coordinator proceeds with the global simulation
time as much as the minimum tN among the received
tN of the simulators.

3. The coordinator orders the imminent simulators to com-
pute the output event of its cellular model. The immi-
nent simulators are those whose tN is the same as current
global simulation time.

4. The coordinator sends all received output-events to its
destination simulators, which are called influencee sim-
ulators.

5. The coordinator orders all simulators to change their cel-
lular model state based on the global tN and input event.
The simulators whose tN is not the same as the global
tN and whose input event is empty will do nothing.

4. PARALLEL DEVS SIMULATION USING
THE GPU

4.1. Parallel Simulation of Simulators and
Atomic Models using the GPU

The DEVS algorithm supports the parallel execution of
atomic models and their relative simulators by handling the
transition collision, and the external event collision [24].
When computing the simulators and atomic models in par-
allel using the GPU, each simulator and its atomic model is
allocated in a thread and run in the GPU, as shown in Fig. 4.
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Figure 4. The whole cellular model and its relative simula-
tors are assigned to a GPU thread, and the threads are sched-
uled and executed in multiprocessors. Each thread accesses
the global memory to get simulators and model data.

To allocate an atomic model and its simulator to a thread
in the GPU, we should consider the execution paradigm of



SIMT [23] in the CUDA. In the SIMT paradigm, the instruc-
tions for all threads should be identical which limits the tar-
get system from a general system to a homogeneous sys-
tem. In a homogeneous system simulation, we express the
system as the aggregated homogeneous cellular model with
the same behavior algorithm. Since all the simulation algo-
rithms of the simulators and the behavior algorithm of the
homogeneous cellular models are identical, each simulator
and atomic model can be allocated to a GPU thread follow-
ing the SIMT paradigm. Even though the instructions of the
simulators and the atomic model are the same, depending on
the stored data, the atomic model and the simulator operates
differently.

4.2. Parallel Simulation of a Coordinator us-
ing the GPU

To simulate the DEVS cellular models and their simulators
in parallel, and to compute some coordinator operations in
parallel using the GPU, some DEVS coordinator algorithms
should be revised.

One of the algorithms is managing time events and im-
minent simulators. When the coordinator asks the simulators
about their next scheduled time, which is denoted by tN, the
simulators send the time event, which contains their tN infor-
mation, to the coordinator. Generally, the DEVS coordinator
manages these time events using an event-list, and the events
are sorted in chronological order based on their tN informa-
tion. Coordinator proceeds global simulation time as much
as the minimum tN which is the tN of the first events in the
event-list. After updating the current simulation time, the co-
ordinator only activates imminent simulators to generate out-
put events.

In the proposed simulation environment, the coordinator
need not to manage the imminent simulators because of the
property of the thread allocation in CUDA. Thread allocation
in CUDA is determined at the program compilation, so the
various number of threads cannot be dynamically allocated in
runtime as many as the number of the imminent simulators.
To generate output events in parallel, the coordinator should
activate all simulators regardless of whether each simulator
is imminent or not. It means that the even-list need not to be
sorted unnecessarily.

Using tNs in the unsorted event-list, the coordinator should
find minimum tN to proceed the simulation time. The meth-
ods to find minimum value using the multiple processors has
been researched, and the parallel reduction technique[25] is
one of them. It enables speed-up by utilizing the many-cores
in GPU. After updating the current simulation time to mini-
mum tN, all simulators and their cellular models run concur-
rently in GPU threads, but only imminent simulators and their
cellular models generate output events.

This approach transfers the computation load from the co-

ordinator to simulators by excluding the burden of sorting the
event-list, and including the overhead of executing all simu-
lators to generate output events. The overhead of activating
all simulators in the GPU is not serious as much as the CPU
because of low context switching overhead due to the warp-
based thread management in CUDA[23].

The other revised algorithm is routing output events of the
simulators. After receiving all output events of the simulators,
the coordinator delivers output events to the destination sim-
ulators based on the coupling information. Each operation of
routing output events is independent with others, but if each
GPU thread transfers an output event to the destination sim-
ulator based on the coupling relation of the source simulator,
there can happen collisions when two or more events whose
destination simulator is same are delivered to the same simu-
lator concurrently. To avoid collisions, we propose the routing
event algorithm, as shown in Algorithm 1.

In Algorithm 1, Let N is the number of the simulators,
Out putEventBu f is the array of output events from immi-
nent simulators, CouplingData is the array of coupling rela-
tion data from the coupled model, and SimulDatArray is the
array of the simulator data. All arrays are stored in the GPU
global memory, and each GPU thread can access these arrays.

Algorithm 1 Parallel Output Event Routing
Input : Out putEventBu f [N],CouplingData[N]
Output: SimulatorDatArray[N]

tID : target simulator ID
nsID : neighbor simulator ID
out putEvent : temporal output event
inputEvent : temporal input event
coupDat :temporal coupling data which is the array of the nsIDs
procedure Parallel-Output-Event-Routing
for each thread do

Initialize tID based on the index of the grid and block
coupDat←CouplinData[tID]
for each nsID in coupDat do

out putEvent← out putEventBu f [nsID]
if the destination simulator ID of out putEvent is same with
tID then

inputEvent← out putEvent
Deliver inputEvent to simulDatArray[tID]

end if
end for

end for

In proposed routing event algorithm, each thread gets the
coupling relation of a target simulator. Based on the coupling
relation of the simulator, all output events from neighbors are
examined. If the destination of some output events is the same
with the target simulator, the output events are delivered to
the target simulator as the input events one by one. Since the
target simulator ID in each thread is not overlapped, this al-
gorithm prevents collisions when delivering output events to



the same destination simulator without some mutual exclu-
sion techniques.

5. SIMULATION PERFORMANCE EVALU-
ATION USING THE GPU

One of the parameter to analyze simulation performance
is simulation execution time. To analyze and show the bene-
fits of the proposed environment, we compare the simulation
performance using the multiple cores in the CPU. Using Am-
dahl’s law, we get two speed-up equations using the multiple
cores in the GPU and the CPU. Combining two equation, we
can deduct the speed-up equation using the GPU compared to
the CPU as follow:

Speedup =
Exe.TimeCPU

Exe.TimeGPU

=
(1−(Pcc+Psa))+

Pcc+Psa
NCcpu

(1−(Pcc+Psa))+
Pcc+Psa

σp ·σe·NCgpu +POverhead
(1)

Exe.TimeGPU and Exe.TimeCPU are the expected simula-
tion execution times using multi-core in the GPU and the
CPU, supposing that the expected simulation execution time
using one core in a CPU is one. Pcc and Psa are the proportions
of the sum of the coordinator, coupled model operations and
the sum of all simulator, atomic model operations that can be
done in parallel in the whole simulation. NCcpu and NCgpu are
the number of cores in the CPU and the GPU. σP is the ratio
of the core performance in the GPU to the core performance
in the CPU, and it is based on a clock speed. σe is the parame-
ter considering other different features like different process-
ing paradigm of the GPU and the CPU. In CUDA, the warp-
based threads are executed in the GPU. When one thread in
a warp is running and 31 threads are finished, 31 threads
should wait until all threads are finished or replaced by the
other warp, while the cores in the CPU can run independently.
Poverhead is the additional overhead of using the GPU. It oc-
curs during the data communication between DRAM and the
GPU global memory, different memory access time, and so
on.

The operations that are computed in parallel are propor-
tional to the number of the cellular models, but other sequen-
tial operations are less affected by number of cellular mod-
els. Thus, if the number of cellular models goes to infinity,
Pcc +Psa goes one, and the POverhead is negligible compared
to the Pcc, Psa. When the number of cellular models goes to
zero, Pcc and Psa also goes zero. According to this relation
between Pcc, Psa, and the number of cellular models, Eq. 1
can be transformed into Eq. 2 in a small-scale cellular model
simulation, and into Eq. 3 in a large-scale cellular model sim-
ulation.

Speedupsmall−scale ≈ 1
1+POverhead

(2)

Speeduplarge−scale ≈
Pcc+Psa
NCcpu

Pcc+Psa
σp·σe·NCgpu

=
σp ·σe ·NCgpu

NCcpu
(3)

Following Eq. 2, in a small-scale simulation, the expected
speed-up using GPU can be less than 1 due to the overhead
of using the GPU. However, in a large-scale simulation, the
expected speedup using the GPU is dependent on the value of
the parameters in Eq. 3. Supposing the large-scale simulation
is computed using an nVIDIA GTS250, which has 128 cores
operating at 1.8GHZ, using an i7 Intel core, which has 4 cores
operating at 2.8GHZ, and σe is about 0.2, we can roughly
predict that the speedup of using the GPU will be about 4
times.

6. PERFORMANCE EVALUATION
To analyze the proposed simulation environment, we sim-

ulate a fire-propagation phenomenon, which is an example of
a homogeneous system. Each unit space starts burning when
the received heat energy is over a certain threshold value and
is generating energy by fuel consumption that is delivered to
neighbors based on the distance to the neighbors, diffusion
velocity, and the wind velocity in the unit space. The pa-
rameters and propagation equations are based on Rothermel’s
research[26][27].

<Complex  Equation> 

<DEVS Cellular Models with different resolution> 

DEVS 
Atomic  
Model 

DEVS 

Figure 5. Using complex equations, a fire-spreading cellular
model is generated using DEVS formalism. As the number
of cellular models increases, more detailed simulations are
possible.

We express a fire-spreading system using different num-
bers of DEVS cellular models. In Fig. 5, as the number of cel-
lular models increases, more detailed simulation results can
be obtained. Different numbers of cellular models are simu-
lated using multi-cores in the CPU and the GPU, as shown in
TABLE 1. The simulation environment using the GPU is de-
veloped using CUDA, and the simulation environment using



the CPU is developed using OpenMP[10]. The experiment
result shows in Fig. 6

Table 1. Experiment Environment

i7 CPU Intel Core i7 CPU 860 @ 2.80GHZ
i5 CPU Intel Core i5 CPU M580 @ 2.67GHZ
GPU nVIDIA GeForce GTS 250

Memory 6GB
CUDA CUDA Driver API SDK v3.2

OpenMP OpenMP v2.0
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Figure 6. Experimental result shows that as the number of
the cellular models goes larger, the simulation execution time
is much more reduced when using the GPU

As expected in Eq. 2, in the small-scale cellular model sim-
ulation, the performance of proposed PDES environment is
lower than the performance of the PDES environment using
a CPU, but this is meaningless because the total simulation
execution time is small in each case. As the number of cel-
lular models grows, the PDE using the GPU outperforms the
PDE using the CPU, and the difference of simulation execu-
tion time also increases.

7. CONCLUSION
In this paper, we present a parallel discrete event simu-

lation environment using a GPU to simulate DEVS cellular
models that represent a homogeneous system. The simula-
tion algorithm in the proposed environment is based on the

DEVS simulation algorithm. Using this algorithm, the oper-
ation of each cellular model and its relative simulator is al-
located to a GPU thread, and all of the allocated threads are
computed in parallel using the GPU’s multiprocessors. To ex-
ecute the atomic model and simulators run concurrently, and
to process some coordinator operations using the GPU in par-
allel, the DEVS simulation algorithm should be revised. One
of the algorithms is managing event-lists and imminent sim-
ulators. Due to the features of CUDA, we remove the process
of sorting the event-list, and activate all simulators to gener-
ate output events. Using the unsorted event-list, we find the
minimum next time information with the parallel reduction
technique. The other revised algorithm is routing event algo-
rithm to be processed in parallel and prevent collisions in the
GPU. We expect the performance speedup of the proposed
simulation environment using the GPU to the environment
using the CPU based on Amdahl’s law. The prediction of the
speed-up is confirmed by the experiment result of the fire-
spreading simulation. As the number of cellular models in-
creases, the speed-up of the PDES using the GPU compared
to the PDEVS using the CPU also grows.

In this paper, due to the SIMT execution paradigm in
CUDA, we limit the target system from a general system to
a homogeneous system. Our future research will concentrate
on providing a DEVS parallel simulation environment for a
general system simulation utilizing both a multiple cores in
GPU and a CPU. By using the CPU and the GPU, the advan-
tages of the CPU and GPU will be maximized.
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