
Framework for Simulation of Hybrid Systems:
Interoperation of Discrete Event and Continuous

Simulators Using HLA/RTI
Changho Sung∗ and Tag Gon Kim†
Department of Electrical Engineering
KAIST, Daejeon, Republic of Korea

Email: chsung@smslab.kaist.ac.kr∗, tkim@ee.kaist.ac.kr†

Abstract—A hybrid system is a combination of discrete event
and continuous systems that act together to perform a function
not possible with any one of the individual system types alone.
A simulation model for the system consists of two sub-models,
a continuous system model, and a discrete event model, and
interfaces between them. Naturally, the modeling/simulation
tool/environment of each sub-model may be different and specific
to the model types and the associated modeling formalisms.
This paper proposes a framework for simulating hybrid systems
by means of interoperation between existing simulators for a
continuous model and a discrete event model using a High
Level Architecture (HLA). Each simulator is executed using
different simulation algorithm, and pre-simulation methodology
is applied for synchronization of the different simulators. The
main advantage of the proposed approach is the reuse of
simulation models, which are developed in their own simulation
environments of heterogeneous types. The proposed framework
was applied to water level simulation.

I. INTRODUCTION

Systems modeling and simulation process vary according
to the types and modeling objectives of the systems. Given
modeling objectives, modelers should determine modeling
levels and simulation tools. For example, continuous models
relate to the change of values via time, and discrete event
models are concerned with state transitions by events. On
the other hand, a hybrid system is defined as a mixture of
continuous and discrete time components that act together to
perform a function that is impossible with any one of the
individual system types alone. An automobile is a kind of
hybrid system, and each component is shown in Fig. 1. The
automobile is a combination of several sub-systems. Among
them, the engine system is represented by several differential
equations. The equations describe compressible flow through
the engine, heat transfer, mechanical vibration, overall engine
dynamics, etc. On the other hand, a gear system is represented
by discrete event models. The gear ratio changes from 1 to 5
or 6, and the change occurs manually or automatically. The
information becomes a parameter for solving the differential
equations of the automobile engine. In order to model and
simulate a hybrid system, such as an automobile, each sub-
systems is modeled in its own modeling environment, and the
combined simulation method is needed.

Simulating models developed in different methodologies
and environments is difficult because their simulation algo-

∫

Discrete Event System (DES) Continuous System (CS)

+

gear ratio

accelerator
information

Engine

rotate wheel

Fig. 1. Hybrid system

rithms and information are disparate from each other. To
overcome the difficulty in simulating hybrid systems, modeling
methods based on a combined formalism, which has both
discrete event and continuous features, are proposed. How-
ever, the combined modeling method is limited by the non-
reusability of existing simulators. In addition, efforts have been
made to integrate the simulators with a specific interface, but
the method also needs modification of the existing simulator
for the interface. To solve the limitations, we propose an
interoperation framework for the simulation of hybrid systems
with existing discrete event and continuous simulators.

In general, the modeling of hybrid systems may require dis-
tributed simulation due to system complexity, reusability, and
interoperability requirements. In order to simulate different
types of models, developed simulators should interoperate with
others developed from various environments. Interoperation
could be achieved by using the High Level Architecture
(HLA) developed by the US Department of Defense (DoD)
for modeling and simulation [1] [2] [3]. The Run-Time In-
frastructure (RTI) is an implementation of the HLA interface,
and it supports developers who use HLA services [4]. This
paper proposes an interoperation framework for the simulation
of hybrid systems using HLA/RTI. The framework includes
hybrid simulation algorithms and considers existing simulation
models.

54 978-1-4577-1365-1/11/$26.00 ©2011 IEEE

This paper is organized as follows. Section II presents sev-
eral related works and previous approaches to the simulation
of hybrid systems. Section III explains the simulation method
for hybrid systems, and the proposed framework for hybrid
simulation is described in Section IV. Section V demonstrates
an example of a water tank control system and its simulation
results. Finally, Section VI concludes the discussion.

II. RELATED WORK

In the past years, some effort has been made to simu-
late hybrid systems. Most of the research has concentrated
on specifying a unified methodology for hybrid simulation.
We call the methodology stand-alone simulation. The stand-
alone simulation of hybrid systems means that the systems
are modeled and simulated by only one modeling tool or
methodology without the help of any others. For example, the
following tools are used for stand-alone simulation and mod-
eling systems: MATLAB/Simulink, Ptolemy II [5], AnyLogic
[6], and PowerDEVS [7]. The SimEvents toolbox [8] supports
MATTLAB/Simulink supports discrete event simulation, and
the Event Translation block enables communication between
SimEvents and other continuous operational blocks. Ptolemy
II is a computational framework for embedded systems that
focuses on concurrent systems, and HyVisual [5] is a hybrid
system modeling tool that provides a visual syntax. AnyLogic
is a tool for modeling and simulating hybrid systems and a way
of HLA support integration in the tool simulation engine. Pow-
erDEVS proposes discrete event methods for the numerical
integration of ordinary differential equations (ODEs). These
approaches commonly propose the use of a unique language
for the specifications of the overall system, which consists of
different model types. These require new modeling formalisms
or tools. Therefore, existing models may not be reusable, and
the model development process has been long.

In addition, some research has simulated models separately,
each of which is communicated by procedure calls. We call
the methodology integrated simulation. The methodology is
expressed by MATLAB/Simulink interfaces, such as CODIS
[9] and BCVTB [10], and is applied to most of the hybrid
control systems. CODIS is a framework for simulating con-
tinuous and discrete systems, and it has a co-simulation bus to
integrate a SystemC model and a MATLAB/Simulink model.
BCVTB is based on the Ptolemy II software environment,
and it integrates with a MATLAB/Simulink model. These
methodologies use a specific interface between two models,
such as Inter-Process Communication (IPC) and function calls.
Two models are executed using such an interface in one
process and tightly coupled. Thus, certain limitations have
existed on the simulation of models developed in different
modeling environments.

Another simulation method consists of the interoperation
between discrete event system models and continuous system
models using HLA/RTI. The models are spatially separated ex-
plicitly. In a few studies, the HDEVSimHLA [11] framework
provides an HLA/RTI interface for interoperating the DEVS
models and the MATLAB/Simulink models. The framework

uses the time management service of HLA/RTI for time
synchronization between heterogeneous models, and it uses
the analog-event and event-analog functions for data exchange.
In addition, AnyLogic [6] and MATLAB provides HLA/RTI
interfaces as a package of the application. Developers have to
use the HLA support modules and implement new interface
codes in each model. This interoperation methodology is the
most efficient method for reusing existing models and mod-
eling systems in different environments. In these researches,
however, existing models may not also be reusable, because
the models are modified to use HLA/RTI, and new interface
codes have to be inserted.

In comparison with previous research, the contribution of
this paper consists in the concept of reusing existing models
without any modifications. The problem common to previous
studies has been the difficulty of reusing existing continuous
and discrete event models, which are developed in different
tools, and inserting specific interfaces into them. To overcome
the problems, this paper proposes using a distributed hybrid
simulation framework for the interoperation of existing models
developed in different tools. The framework supports interop-
eration of such models via the standard interface of HLA. It
also supports time synchronization between models and data
conversion for communicating with each other. A main pur-
pose of the proposed approach is to exploit the reusability of
existing continuous and discrete event models, each of which
is simulated in independent simulation environment/tools.

III. HYBRID SIMULATION ALGORITHM

In general, a discrete event model is executed by an event-
driven approach. It advances time asynchronously—that is,
it skips time when there is no change in the state of the
system and examines the changes. Therefore, it is important
to find the minimum next-event time of the discrete event
model, because interval time between current and next-event
time is not considered. It takes the execution time of an
event from the top of a sorted stack, calculates its effect
on the system state, schedules dependent events by placing
them into appropriate places in the event stack, and advances
the simulation clock to the next scheduled event. On the
other hand, a continuous model is commonly executed by the
discrete-time simulation method. It advances synchronously—
that is, it uses the continuous state at some time, t, to compute
the value of a continuous state variable at some short time later
at t + Δt. The continuous variable solver then advances the
simulation clock to t + Δt and continues [12]. The time step
may be determined by the numerical analysis method of the
continuous model.

Simulation of a hybrid system goes beyond the simple
numerical integration of the continuous variables and speci-
fication of the particular interactions that may occur among
continuous and discrete state variables; there is a fundamental
mismatch between the way time is advanced by a discrete
event-driven versus a continuous variable integrator. In order to
solve the mismatch, simulation time synchronization between
a discrete event and a continuous model is required. However,

55

the next time of the continuous model for scheduling is not
predictable, unlike the time of discrete event model. To solve
the problem, we use a pre-simulation method for scheduling
the continuous model.

A. Pre-Simulation

Simulation time synchronization requires a chronological
order of logical times between continuous and discrete event
simulations. To synchronize the simulation times with different
time advance mechanisms we introduce the concept of pre-
simulation for continuous simulation. Pre-simulation [11] is
continuous simulation except that it occurs within a predefined
time window to unify the time advance mechanism between
two simulations, and the next scheduled time is located
through pre-simulation. Hence, pre-simulation is defined as
simulating a continuous time model in advance to find the
next scheduled time of the model. To explain this simulation
method, we used the concept of state event and time event
[13]. A state event is triggered by the system status, the
fulfilling certain conditions (so-called state condition)—e.g.,
the crossing of a state variable through a prescribed threshold.
A time event is a scheduled event whose realization time is
known in advance. A time event occurs at a given point in
time, independent of the continuous-time state of the model.
Therefore, a time event is predictable.

Algorithm 1 shows the pre-simulation of a continuous
model. Let tC denotes the current simulation time and tR
be the next request time. The continuous model is simulated
between tC and tR, and the interval is a predefined time
window. If a state event is detected within the time window,
the state event occurs, and the event time, tE , is located in the
threshold point. tE is set to the next scheduled time. On the
other hand, if not, a time event occurs and the next scheduled
time is set to tR. After simulation, reinitialization of state
variables is needed. The pre-simulation process allows us to
control the time advancement of a continuous model.

Algorithm 1 Pre-Simulation of Continuous Model
procedure PRE-SIMULATION(tC , tR)

1: tC : current simulation time
2: tR : next requested time
3: tE : state event time
4: tN : next scheduled time
5: simulation in [tC , tR]
6: if state event detected then
7: send state event and the time(tE) is located
8: tN ← tE
9: else

10: send time event
11: tN ← tR
12: end if
13: reinitialization of state variables
14: return tN

B. Time Advancement of Continuous Model

Let ΔT denotes the time window to find the next scheduled
time, and let s be the state of a continuous model. The state,
s, is either ACTIVE or PASSIVE. An ACTIVE state means that
the continuous model is in the execution state for generating a
state event or time event, and the PASSIVE state is the waiting
state for events from the discrete event model. Algorithm 2
shows the time advance mechanism of a continuous model.
The next-event time of a continuous model is the result of
pre-simulation operation in an ACTIVE state. In the PASSIVE
state, the pre-simulation process is not needed, and the next
time is infinity because the continuous model does not advance
its time until it receives data from the discrete event model.

Algorithm 2 Time Advancement of Continuous Model
procedure TIME-ADVANCE

1: tC : current simulation time
2: tN : next scheduled time
3: s : state of continuous model {ACTIVE, PASSIVE}
4: ΔT : time window
5: initialization
6: s← ACTIVE
7: loop
8: if s is ACTIVE then
9: tR ← tC + ΔT

10: tN ← Pre-Simulation(tC , tR)
11: else
12: tN ←∞
13: end if
14: request next time advance(tN)
15: end loop

C. Hybrid Simulation

1) Synchronization: Using the pre-simulation method, we
can find the next scheduled time of a continuous model. The
time scheduler calculates the next time of the simulators and
sends the time information and interaction message between
the models. In hybrid simulation, there are two types of
interaction, as shown in Fig. 2.

• A discrete event changes the relation of a continuous
variable.

• A continuous variable reaches a threshold point, and it
causes a discrete event.

We can predict the next-event time of a discrete event
model, and the time, t1, is requested to time scheduler. This
means that the discrete event model has no events and no
changes of state until t1. A continuous model executes a pre-
simulation with time window ΔT until t1 to check state events.
If there is no state event in the continuous model, the discrete
event on t1 is transferred to the continuous model, and the
relation of the continuous variable, Scont, is changed. If a
state event occurs during pre-simulation, the continuous model
causes a discrete event at the threshold point, t2. The event

56

changes the state of the discrete event model, and the model
is re-scheduled.

DES

CS

Time Scheduler

t

t

Sdisc

Scont

T
(time window)

t1

t1

DES

CS

Time Scheduler

t

t

Sdisc

Scont

T
(time window)

t2

t2

threshold

Fig. 2. Pre-simulation of CS and time scheduling

2) Data Conversion: A discrete event model requires a
discrete input event for its simulation, and it generates a
discrete output event. A continuous model needs an input
analog signal for its simulation, and it generates other output
signal. Fig. 3 shows the need of the data conversion between
the models. In a hybrid simulation, an output of a discrete
event model becomes an input of a continuous model, and
vice versa.

Discrete
Event Model

Continuous
Model

t
t1 t2

e1

e2

t

t
t3 t4

e3 e4

t

A/E
E/A

Event Event

Analog signal Analog signal

Fig. 3. Why is the data conversion necessary?

For this data conversion, we use an analog-to-event (A/E)
and event-to-analog (E/A) converter [11]. The E/A conversion
is conducted as shown in the event-function mapping table
shown in Fig. 4. The table defines how the discrete events
are converted to continuous signals. The signal is a function
of time. On the other hands, A/E conversion is conducted by
zero-crossing detection [14]. An event is triggered when a
continuous signal reaches the threshold level, and the event
message is determined by the hit crossing direction.

IV. PROPOSED FRAMEWORK FOR SIMULATION OF HYBRID

SYSTEMS

From a software engineering perspective, the software qual-
ity has to be considered for the modeling and simulation of

Continuous Model

Discrete Event Model

E/A A/E

Event Function

e1 f1(t)

e2 f2(t)

… …

en fn(t)

Zero-crossing
detection

Event-Function mapping table

t
t1 t2

e1

e2

Fig. 4. Data conversion using A/E and E/A converter

hybrid systems. The new requirements for software quality
are reusability, maintainability, and interoperability [15]. In
order to satisfy the requirements, we propose an interoperation
framework for hybrid systems using HLA/RTI. Our proposed
framework has several assumptions about simulation environ-
ment as follows:

1) A MATLAB/Simulink model is used for the model-
ing and simulation of continuous systems. MATLAB
is a representative mathematical computing tool that
provides a flexible environment for continuous systems
modeling and simulation.

2) Lookahead = 0. (This means that the models are simu-
lated without delay.)

3) Mutually exclusive activation between DES and CS. In
our approach, DES acts as a controller for CS in such
matters as the relation between a controller and a plant.

A. Framework Design and Implementation

A discrete event model and a continuous model are simu-
lated in their own ways, as explained in Section III. In addition,
the simulators may be developed in different environments. To
interoperate different simulators without any modification, we
use an HLA interface, a so-called HLA adaptor, to connect the
simulators and RTI. The simulator requires essential services
and callbacks to simulate itself, and the HLA adaptor helps
the modelers to select the necessary interfaces easily.

A/E & E/A

HLA I/F

MATLAB/Simulink I/F

HLA/RTI

HLA Adaptor for
MATLAB/Simulink

Pre-simulation
& Data conversion

KHLAAdaptor
Library

KHLAdaptor library

Network I/F

DES CS

HLA Adaptor
for DES

AB////SSSiii

Fig. 5. Proposed framework for simulation interoperability of hybrid systems

Fig. 5 shows the proposed framework for the interoperation
of the hybrid system models. A discrete event model uses

57

CMatlabModel

MATLAB/Simulink

clear all

open ‘MODEL’

set_param(‘MODEL’, ‘BooleanDataType’, ‘off’) For zero-crossing data
(boolean data double data)

engOpen(NULL)

simset(OPTION, ‘InitialState’, STATE)

sim(‘MODEL’, [START END], OPTION, INPUT)

engClose()

[T, X, Y]

loop

T : Simulation end time
X : State vector
Y : Output vector

Pre-Simulation

Fig. 6. Implementation of the MATLAB/Simulink interface in an HLA
adaptor

an adaptor for HLA, and the adaptor is developed using a
KHLAAdaptor library [16]. On the other hand, the existing
adaptor library cannot be used for a continuous model, because
the time advancement of a continuous model needs pre-
simulation, as explained in the previous section. Therefore,
an adaptor for a continuous model needs modification of the
existing KHLAAdaptor library, and it includes pre-simulation
algorithm and data conversion rules. To support the functions,
a CMatlabModel class is added in the KHLAAdaptor library.
The role of the class is depicted in Fig. 6. Using the class, the
adaptor opens a continuous model developed using the MAT-
LAB/Simulink, and controls the model. For pre-simulation,
the adaptor executes the model during the time window, from

START to END time, using input signal data, and then the
return values are used for next pre-simulation. The functions
for the MATLAB/Simulink interface in Fig. 6 are explained
in Table I. The sim and simset functions are used for the pre-
simulation of a continuous model.

TABLE I
FUNCTIONS FOR MATLAB/SIMULINK INTERFACE

Function Description

engOpen State MATLAB process
open Open Simulink model

set param Set simulation parameters
sim Simulate a model with a specific input data

during [start time, end time]
simset Edit simulation parameters

engClose Quit MATLAB process

B. Simulation of the Framework

The simulation of the proposed framework is depicted in
Fig. 7. An adaptor for a discrete event model checks the
next-event time from the model and requests the time to RTI.
The next time is deterministic because the scheduling time is
predictable in the discrete event model. If an event is received,
receiveInteraction API of HLA is called, and the message is
transferred to the discrete event model. After it calculates the
message, the discrete event model is re-scheduled, and the
adaptor requests the new scheduling time to RTI. If no event
is received, the model generates an output message, and the
adaptor sends the message to the continuous model through
RTI.

An adaptor for a continuous model conducts the pre-
simulation algorithm and data conversion. The adaptor con-
trols the continuous model according to the TIME-ADVANCE
procedure, as shown in Algorithm 2. In ACTIVE state, the

DES DES Adaptor RTI

get next event time
next event time request

receive interaction Input message

Scheduling message
next event time request

time advance grant

loop

time advance grant
Output message

Scheduling message
send interaction

next event time request

alt [event received]

[else]

(a) Sequence of DES

RTI CS Adaptor CS

Pre-simulation [t1, t2]
t2 = t1 + T

next event time request

time advance grant

send interaction

loop
[mode == ACTIVE] alt

[else]

tN = infinity

alt [event occurred]
message

next scheduled time
tN = tE (t1 tE t2)

[else]
next scheduled time

tN = t2

mode = PASSIVE

null event

(b) Sequence of CS considering pre-simulation

Fig. 7. Simulation of the proposed framework

58

adaptor executes the continuous model during [t1, t1 + ΔT].
The pre-simulation returns information about a state event or
a time event. If a state event occurs at the threshold point, the
adaptor sends the event to the discrete event model through the
sendInteraction API of RTI. The state of the adaptor changes
to PASSIVE, and the next scheduled time is set to the event
time, tE . If no event has occurred during the pre-simulation,
a time event occurs at the end of the pre-simulation. The
next scheduling time is set to t1 + ΔT . The adaptor requests
the next-event time, tE of t1 + ΔT , and this process is
repeated. When a discrete event is received by the adaptor for
the continuous model, the event converts into a continuous
signal according to an event-function mapping table. The
converted signal is used for an input of the sim function of a
CMatlabModel class. An adaptor for a continuous model is,
as it were, a state event finder and a data converter as well as
an agent to connect with HLA/RTI. The time management of
HLA supports synchronization between both adaptors.

V. EXPERIMENTATION

The proposed framework is applied to the simulation of a
water level control system. In Fig. 8, a water level control
system consists of two subsystems, a controller and a water
tank. In the water tank, there are two water level sensors
(overflow, shortage), and the detected state of the water tank is
transmitted to the controller. The controller uses an ON/OFF
switch to control the water tank, and the control signal controls
the operation of the tank.

Max.

Min.

Controller Water Tank

Control signal

Status of a tank

overflow
sensor

shortage
sensor

ON/OFF

Fig. 8. Water level control example

A. Continuous Model

Fig. 9 shows water entering the tank from the top and
leaving through an orifice in its base. The rate at which the
water enters is proportional to the voltage, V, applied to the
pump. The rate at which the water leaves is proportional to
the square root of the height of the water in the tank. The
differential equation for the height of water in the tank, H, is
given in equation 1.

A
dH

dt
= bV − a

√
H (1)

Fig. 9. Water tank example

, where
V : input voltage of water tank
A : cross-sectional area of a tank
b : a constant related to the flow rate into a tank
a : a constant related to the flow rate out of a tank

The mathematical form of the water tank model is described
using a MATLAB/Simulink as shown in Fig. 10. The model
contains one state, H , one input, V , and one output, H . The
height of the water tank is the state of the equation, and the
value of the state is changed via continuous time. The input
of the model is a voltage signal, and the value determines the
quantity entering the water tank.

Fig. 10. Simulink model of water tank (CS)

B. Discrete Event Model

A controller is a discrete event system that controls the
volume of water entering a tank. This system is modeled using
DEVS formalism, and the model is shown in Fig. 11. The
initial state of the model is WAIT, and the time advance of
the state is infinity. When the model receives a shortage event
from the water tank, it changes the state from WAIT to ON.
Because the event means that the tank is lacking water, an on
event occurs to control the entering water. On the other hand,
when an overflow event is received, the state is changed to
OFF, and then an off event occurs.

59

WAIT

ta = inf

? overflow

? shortage

ON

ta = 0

OFF

ta = 0

! on

! off

Fig. 11. DEVS model of water control (DES)

C. Data Conversion

Data conversion is necessary for co-simulation between
simulators with different characteristics. A water tank needs
analog signals to operate a pump, and it has continuous values
represented by the height of the water in the tank. In contrast,
a controller requires events for a state transition.

The continuous values for the amount of the water in the
tank are detected by threshold sensors. Fig. 12 describes the
relation between threshold values and events. When the height
of the water reaches 4 because the water is rising, an overflow
event occurs. Likewise, a shortage event occurs when the
height reaches 1 because the water is falling. The events are
used for inputs to the controller. We used the hit crossing block
of the MATLAB/Simulink to convert the analog signal into the
discrete event.

4

1

overflow

t1

shortage

t2

Threshold

Threshold

t t

t t

State event
detection
(from water tank)

Event conversion
(to water control)

Fig. 12. A/E conversion: state event detection from a water tank model

When events occur from a water level controller, they have
an effect on the operation of the water tank. The events are
converted to a segment function, in that the water tank is a
continuous model. The conversion relation is shown in Table
II. An event on(t = t1) is transformed into f1(t) = u(t− t1)
which means that input value of a water tank is one for
a positive argument, i.e. after t1 time. Likewise, an event
off(t = t2) is transformed into f2(t) = u(t2 − t).

TABLE II
EVENT-ANALOG CONVERSION OF WATER LEVEL SYSTEM

Event Analog
on(t = t1) f1(t) = u(t − t1)
off(t = t2) f2(t) = u(t2 − t)

D. Federation Design and Implementation

In order to simulate a controller and a water tank model
with RTI, an HLA interface should be implemented for each
simulator. The HLA interface is a form of adaptor, as explained
in Section IV. In the case of the controller, the design method
of its adaptor is shown very well in [17]. The design and
implementation of the HLA adaptor for the water tank as
a continuous model is conducted using an adaptor for the
MATLAB/Simulink model described in the previous section.

(OMDT v1.3.5.17)
(ObjectModel (Name " ")
 (VersionNumber " ")
 (Type FOM)
 (ModificationDate 11/29/2010)
 (MOMVersion "1.3")
 (FEDname "FederationName")
 (EnumeratedDataType (Name "CONTROL_COMMAND")
 (AutoSequence No)
 (StartValue 1)
 (Enumeration (Enumerator "ON")
 (Representation 1))
 (Enumeration (Enumerator "OFF")
 (Representation 2))
)
 (Interaction (ID 1)
 (Name "CONTROL")
 (ISRType IR)
 (DeliveryCategory "reliable")
 (MessageOrdering "timestamp")
 (Parameter (Name "ID")
 (DataType "unsigned long")
 (Cardinality "1")
 (Accuracy "perfect")
 (AccuracyCondition "always")
)
 (Parameter (Name "COMMAND")
 (DataType "CONTROL_COMMAND")
 (Cardinality "1")
 (Accuracy "perfect")
 (AccuracyCondition "always")
)
)
)

Fig. 13. Common data for simulation of water level system

The common data between simulators, the so-called Federa-
tion Object Model (FOM), includes one interaction, and it has
one parameter, as shown in Fig. 13. The interoperability data
is a discrete event, ON or OFF . The event is converted to
the segment function defined in Table II in the HLA adaptor
for a continuous model.

In the initialization stage, input ports and hit crossing points
are registered in the HLA adaptor. The initial signal of the
input port control is 1, which denotes a positive value of
u(t). In the E/A conversion stage, the input signal function is
determined by input events. When an input event is OFF , the
function of the input port control is set to 0, which means a
negative value for u(t1 − t), and t1 is event occurrence time.
In the case of ON , the function is 1, i.e., u(t− t2).

The overall architecture of the water level control system
is shown in Fig. 14. The controller model is implemented
using DEVSim++ [18], which is C++ library to support
implementation of the DEVS models, and the water tank
model is a form of the MATLAB/Simulink model. Two models
are connected to their adaptors, which support the HLA service
using MÄK RTI 3.4.

60

HLA/RTI

Controller
(DEVS)

Water Tank
(MATLAB/Simulink)

HLA adaptor
for DES

HLA adaptor
for CS

(MÄK RTI 3.4)

Fig. 14. Overall architecture of water level control system

E. Simulation Result

Fig. 15 shows a simulation result. The water fills the tank
when the ON switch of a controller is turned on. When an
overflow sensor, which is located at height 4, detects the
water, the height of the water in the tank goes down. In
contrast, when the water decreases to height 1, a shortage
sensor is activated, and the height of the water begins to
rise. The controller and water tank model were not modified
for simulation interoperability, and the proposed framework
enables reuse of the simulators.

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

simulation time

Fig. 15. Variation of water height

VI. CONCLUSIONS AND FUTURE WORKS

This paper proposes an interoperability framework for the
simulation of hybrid systems. A hybrid system is a mixed
form of discrete events and continuous systems. Each system
has different characteristics, and the models are developed
in different environments. Our adaptor-based interoperation
framework using HLA/RTI makes it possible to reuse existing
models and to interoperate with other simulators. The adaptor
includes an HLA interface, pre-simulation algorithms, and
data conversion. The water level experiment shows the hybrid
simulation using an HLA adaptor, and we could reuse the
existing models without any modification. Further studies
are needed to simulate discrete event models and general

continuous models in addition to MATLAB/Simulink models.
Moreover, faster and more efficient pre-simulation algorithms
should be discussed.

ACKNOWLEDGMENT

This work was supported by Defense Acquisition Program
Administration and Agency for Defense Development under
the contract UD080042AD, Korea.

REFERENCES

[1] “IEEE standard for modeling and simulation (M&S) high level archi-
tecture (HLA) - framework and rules,” IEEE Std 1516-2000, pp. i–22,
Sep. 2000.

[2] “IEEE Standard for Modeling and Simulation (M&S) High Level Ar-
chitecture (HLA) - Federate Interface Specification,” IEEE Std 1516.1-
2000, pp. i–467, 2001.

[3] “IEEE standard for modeling and simulation (M&S) high level archi-
tecture (HLA)-object model template (OMT) specification,” IEEE Std
1516.2-2000, pp. i–130, 2001.

[4] J. S. Dahmann, R. M. Fujimoto, and R. M. Weatherly, “The Department
of Defense High Level Architecture,” in Proceedings of the 29th
conference on Winter simulation, ser. WSC ’97, Atlanta, GA, United
States, Dec. 1997, pp. 142–149.

[5] H. Zheng, “Operational semantics of hybrid systems,” Ph.D. dissertation,
Berkeley, CA, USA, 2007, adviser-Edward A. Lee.

[6] A. Borshchev, Y. Karpov, and V. Kharitonov, “Distributed simulation of
hybrid systems with AnyLogic and HLA,” Future Gener. Comput. Syst.,
vol. 18, no. 6, pp. 829–839, 2002.

[7] E. Kofman, M. Lapadula, and E. Pagliero, “PowerDEVS: A DEVS-
Based Environment for Hybrid System Modeling and Simulation,”
School of Electronic Engineering, Universidad Nacional de Rosario,
Tech. Rep. LSD0306, 2003.

[8] M. Clune, P. Mosterman, and C. Cassandras, “Discrete Event and Hybrid
System Simulation with SimEvents,” in Discrete Event Systems, 2006
8th International Workshop on, Ann Arbor, MI, USA, Jul. 2006, pp.
386–387.

[9] F. Bouchhima, G. Nicolescu, E. M. Aboulhamid, and M. Abid, “Generic
discrete-continuous simulation model for accurate validation in heteroge-
neous systems design,” Microelectron. J., vol. 38, no. 6-7, pp. 805–815,
2007.

[10] M. Wetter and P. Haves, “A Modular Building Controls Virtual Test Bed
for The Integration of Heterogeneous Systems,” in SimBuild 2008 - 3rd
National Conference of IBPSA-USA, Berkeley, CA, USA, Jul. 2008, pp.
69–76.

[11] S. Y. Lim and T. G. Kim, “Hybrid Modeling and Simulation Method-
ology based on DEVS Formalism,” in SCSC ’2001, Orlando, FL, USA,
Jul. 2001, pp. 188–193.

[12] J. F. Klingener, “Programming combined discrete-continuous simula-
tion models for performance,” in WSC ’96: Proceedings of the 28th
conference on Winter simulation, Coronado, CA, USA, Dec. 1996, pp.
833–839.

[13] F. E. Cellier, “Combined continuous/discrete system simulation by use
of digital computers: techniques and tools,” Ph.D. dissertation, Zürich,
Switzerland, 1979.

[14] P. A. Fishwick, Handbook of Dynamic System Modeling (Cpaman &
Hall/Crc Computer and Information Science). Chapman & Hall/CRC,
2007.

[15] J. P. Cavano and J. A. McCall, “A framework for the measurement
of software quality,” in Proceedings of the software quality assurance
workshop on Functional and performance issues, 1978, pp. 133–139.

[16] J.-H. Kim, S.-Y. Hong, and T. G. Kim, “Design and Implementation
of Simulators Interoperation Layer for DEVS Simulator,” in M&S-
MTSA’06, Calgary, Canada, Jul. 2006, pp. 195–199.

[17] T. G. Kim, C. H. Sung, S.-Y. Hong, J. H. Hong, C. B. Choi, J. H. Kim,
K. M. Seo, and J. W. Bae, “DEVSim++ Toolset for Defense Modeling
and Simulation and Interoperation,” The Journal of Defense Modeling
and Simulation: Applications, Methodology, Technology.

[18] T. G. Kim, DEVSimHLA User’s Manual, 2007. [Online]. Available:
http://smslab.kaist.ac.kr

61

