
SOFTWARE PROCESS IMPROVEMENT AND PRACTICE
Softw. Process Improve. Pract. 2006; 11: 373–383

Published online 12 June 2006 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/spip.284

An Approach to a Hybrid
Software Process
Simulation using the DEVS
Formalism

Research Section
KeungSik Choi,*,† Doo-Hwan Bae and TagGon Kim
Department of EECS, Korea Advanced Institute of Science and Technology
(KAIST), Daejon 305-701, Korea

This article proposes an approach to a hybrid software process simulation modeling (SPSM)
using discrete event system specification (DEVS) formalism, which implements the dynamic
structure and discrete characteristics of the software development process. Many previous
researchers on hybrid SPSM have described both discrete and continuous aspects of the
software development process to provide more realistic simulation models. The existing hybrid
models, however, have not fully implemented the feedback loop mechanism of the system
dynamics.

We define the DEVS Hybrid SPSM formalism by extending DEVS to the hybrid SPSM domain.
Our hybrid SPSM approach uses system dynamics modeling to convey details concerning
activity behaviors and managerial policies, while discrete event modeling controls activity
start/completion and sequence. This approach also provides a clear specification, an explicit
extension point to extend the simulation model, and a reuse mechanism. We will demonstrate
a Waterfall-like hybrid software process simulation model using the DEVS Hybrid SPSM
formalism. Copyright 2006 John Wiley & Sons, Ltd.

KEY WORDS: hybrid software process simulation modeling; DEVS formalism; model extension

1. INTRODUCTION

The software process shows both discrete system
aspects (start/end of an activity and recep-
tion/release of an artifact by an activity) and contin-
uous system ones (percentage of developed prod-
uct, percentage of discovered defects) (Donzelli and
Iazeolla 2001). In other words, the software process
is composed of event-driven dynamics (artifacts

∗ Correspondence to: KeungSik Choi, Department of EECS,
Korea Advanced Institute of Science and Technology (KAIST),
Daejon 305-701, Korea
†E-mail: kschoi@se.kaist.ac.kr

Copyright 2006 John Wiley & Sons, Ltd.

moving among different activities, phase transi-
tion) and time-driven dynamics (dynamic behavior
by the feedback structure of the process). Discrete
event models describe the software development
process as a sequence of discrete activities, and rep-
resent the process details, such as code complexity
and programmer capability, through the attributes
of each entity, but may not have enough events to
represent the continuously varying dynamics of the
process. On the other hand, the system dynamics
models describe the interactions between project
factors, but do not easily represent discrete process
steps (Martin and Raffo 2000).

Many researchers have tried to combine discrete
event simulation and continuous simulation to

Research Section K. Choi, D.-H. Bae and T. Kim

model software processes more realistically. Rus
et al. (1999) and Lakey (2003) made it possible to
explicitly analyze the performance of each discrete
process while incorporating the feedback loop
mechanism. Martin and Raffo (2000) analyzed the
manpower utilization using a hybrid simulation
model, which shows us how manpower levels vary
on the basis of the changes in workforce, hiring
delays, allocation decisions, and the point at which
the available manpower is wasted. This analysis
is not reproducible in the continuous or discrete
model alone. Donzelli and Iazeolla (2001) combined
the three traditional modeling methods (analytical,
continuous, and discrete event).

The previous researchers, however, have not
fully represented the feedback loop mechanism of
the system dynamics. The feedback loops approxi-
mated by Rus et al. (1999) and Lakey (2003) are too
coarse to fully represent the dynamics of continu-
ously interacting variables such as schedule, size,
quality, manpower, overhead, skill level, etc. Mar-
tin and Raffo (2000) assumed that the workload for
an activity is constant during its life-cycle, which
prevents the model from calculating the activity
duration dynamically. This affects all the dynamics
of the combined model. Donzelli and Iazeolla (2001)
have not explicitly represented the managerial con-
trols, such as schedule pressure, fatigue, training
policies, and staff experience, that are incorporated
in the feedback loops of system dynamics.

We propose a DEVS-based hybrid software pro-
cess simulation modeling (SPSM) method, which
fully represents the feedback mechanism of sys-
tem dynamics and the discrete phase transition. We
define DEVS Hybrid SPSM formalism by extend-
ing DEVS (discrete event system specification) to the
hybrid SPSM domain. Our hybrid SPSM approach
uses the system dynamics modeling to convey
details concerning the activity behaviors and man-
agerial policies, while the discrete event modeling
controls the activity start/completion and sequence.
This approach also provides a clear specification,
an explicit extension point to extend the simulation
model, and a reuse mechanism.

The structure of this article is as follows.
In Section 2 we compare and analyze the pub-
lished hybrid SPSM approaches. Section 3 intro-
duces the characteristics of the DEVS-based hybrid
SPSM approach. It describes the concept of for-
malism embedding and the characteristics of

DEVS Hybrid SPSM formalism, which is an exten-
sion of DEVS formalism to the hybrid software
process simulation. Section 4 shows the overall
architecture of the Waterfall-like life-cycle model
as a case study and analyzes the simulation result
with different normal productivity values for each
phase. Section 5 summarizes the main results of this
article and gives a plan for future work.

2. ANALYSIS OF THE PUBLISHED HYBRID
SPSM APPROACHES

2.1. Detailed Analysis on the Existing Hybrid
SPSM Approaches

Rus et al. (1999) and Lakey (2003) represent the pro-
cess as discrete activities and try to incorporate the
feedback loops of system dynamics. They incorpo-
rate feedback loops by dividing the inputs by five,
iterating five times, calculating product, process,
and project factors, and passing the attributes on
to the next activity. One of the advantages of this
approach is that it is possible to explicitly analyze
the performance of each discrete process, which
is regarded as a difficult task in system dynamics
simulation (Martin and Raffo 2000).

This approach, however, approximates the sys-
tem dynamics models too coarsely and does not
include the managerial aspect of the software pro-
cess, such as decision rules for manpower allocation,
scheduling, etc. Furthermore, the feedback mecha-
nism of this approach is different from the basic
principle of system dynamics. The behavior of a
system is derived from the structure of the feedback
loops and the stocks and flows in system dynam-
ics (Sterman 2004), but this approach calculates the
dynamic variables as the product of several param-
eters as shown in Equation (1). The parameters are
used to offset the estimated values of the process
(Lakey 2003). The Schedule, Size, and Quality factors
are calculated and updated during each of the five
iterations, but the remaining factors are static.

DevelopEffort = ExpectedDevelopEffort × Schedule

× Size × Quality × Manpower × Overhead

× Skill × ToolSupport × Maturity × Growth (1)

Martin and Raffo (2000) have developed a hybrid
simulation model, which ensures that the discrete
activities are consistent with the implied activities

Copyright 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 373–383

374 DOI: 10.1002/spip

Research Section Hybrid Software Process Simulation using the DEVS Formalism

of the continuous portion. This combined model
would allow investigation of the effects of discrete
resource changes on continuously varying produc-
tivity and the influences of the duration of discrete
code inspection tasks on continuously changing
error rates. This is a creative way of combining
discrete event and system dynamics paradigm.

However, this approach has similar problems as
the approach of Rus et al. and Lakey. The estimated
required workload is constant during the life-cycle,
so it does not represent the feedback structure
properly. The workload may increase because of
the reworks, which dynamically affect the activity
duration.

Donzelli and Iazeolla (2001) combine three tra-
ditional modeling methods, which are analytical,
continuous, and discrete modeling, but they do not
explicitly represent the feedback loop mechanism of
system dynamics and the managerial controls, such
as schedule pressure, fatigue, training policies, and
staff experience. You can refer the detailed descrip-
tions in the proceedings of the ProSim’05 (Choi et al.
2005). Table 1 describes and compares the discussed
hybrid SPSM approaches.

2.2. Results of the Analysis

Through the analysis of previous research we asked
what needed to be continuous and what needed to
be discrete in software process simulation models
and what we needed to know about the process
in order to use the hybrid model. Of course,
these depend on the purpose of the simulation
modeling, but we examined the aspects that are
most appropriate for general software process
simulation models.

We concluded that the hybrid software process
simulation model should be a discrete model in
phase (activity) transition (e.g. from Requirements
to Design), and a system dynamics model not only
within the activity but also in the overall process life-
cycle. By taking advantage of previous research and
incorporating the ‘Improvement points’ (Table 1)
we defined the functionalities of the hybrid software
process simulation models as follows:

• Fully incorporating the feedback mechanism of
the system dynamics.

• Analyzing the performance of each discrete
process explicitly.

• Making the discrete activities consistent with
the activities of the continuously varying project
environments.

3. AN APPROACH TO A HYBRID
SOFTWARE PROCESS SIMULATION USING
DEVS FORMALISM

We have extended the DEVS formalism to apply it to
hybrid SPSM because DEVS is a general, extensible,
and easily verifiable formalism. It also has several
simulation engines in public domain, which imple-
ment the DEVS formalism. The extended formalism
provides natural hybrid simulation modeling capa-
bilities by enabling both discrete and continuous
simulation modeling in the same environment and
also provides the defined functionalities for the
hybrid software process simulation model.

3.1. DEVS Formalism

DEVS is a general formalism for discrete event sys-
tem modeling based on set theory (Zeigler et al.
2000). It allows representing any system by three
sets and four functions: input set, output set, state
set, external transition function, internal transition
function, output function, and time advanced func-
tion. DEVS formalism provides the framework for
information modeling, which has several advan-
tages, such as completeness, verifiability, extensibil-
ity, and maintainability (Kim 2004), for analyzing
and designing complex systems. DEVS can also
approximate continuous systems using numerical
integration methods. Thus, simulation tools based
on DEVS are potentially more general than other
tools, including continuous simulation tools (Kof-
man et al. 2003). With these properties, we applied
DEVS formalism to the hybrid SPSM.

DEVS has two kinds of models to represent
systems. One is an atomic model and the other is
a coupled model that can specify complex systems
in a hierarchical way (Zeigler et al. 2000). The DEVS
model processes an input event on the basis of its
state and condition, and it generates an output event
and changes its state. Finally, it sets the time during
which the model can stay in that state. An atomic
DEVS model is defined by the following structure
(Zeigler et al. 2000):

M = 〈X, Y, S, δext, δint, λ, ta〉,
Copyright 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 373–383

DOI: 10.1002/spip 375

Research Section K. Choi, D.-H. Bae and T. Kim

Table 1. Comparison of the hybrid simulation modeling approaches

Author Rus et al. and Lakey Martin and Raffo Donzelli and Iazeolla

Modeling purpose Project estimation & project
management

Evaluation of potential process
changes

Prediction of the effects of
requirements instability

Implementation tool Extend Extend QNAP2 package (SIMULOG)
Basic approach Feedback loops are incorporated

into each of the discrete activity
Discrete event models are
combined in system dynamics
framework

Analytical models are embedded
in the discrete event queuing
network

Divide the work and iterate five
times in an activity

Project environment: SD Dynamic behavior of each
activity: Analytical or continuous
model

Discrete event model Start and end of an activity Discrete process steps and
components

Start and end of an activity

Each input is a discrete entity that
has size and quality attributes

Process details are modeled to
entities with attributes

Reception and release of an
artifact

Product size and quality are passed
on to next activity

Calculates duration, total effort,
and errors, which are passed out to
SD model

Event-driven dynamics of the
artifacts moving among activities

Continuous model Dynamic feedback loops calculate a
number of equations for product,
process, and project factors

SD model passes out the project
environment data to discrete event
model

Resource consumptions and
percentage of discovered defects

Timing issues Time advance does not mean
anything, schedule model in each
activity calculates calendar weeks

Each activity computes the
duration time but advances the
clock only by the specified delta
time

Time advances discretely on the
basis of the delivery time
computed by COCOMO-like time
estimator

Advantages Explicitly analyzes the performance
of each discrete process

Dynamic manpower levels and
discrete manpower utilization

Combination of three traditional
modeling methods

Improvement points Coarse approximation of the
system dynamics model

Duration time of each activity
cannot be dynamically calculated

No feedback loop mechanism

where

• X is the set of input values,
• Y is the set of output values,
• S is the set of states,
• δext : Q × X → S is the external transition func-

tion, where Q = {(s,e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the
total state set, e is the time elapsed since last
transition,

• δint : S → S is the internal transition function,
• λ : S → Y is the output function,
• ta: S → R+

0,∞ is the set positive real numbers
between 0 and ∞.

The DEVS coupled model is constructed by cou-
pling the DEVS models. Through the coupling,
output events of one model are converted into input
events of the other. In DEVS theory, the coupling of
DEVS models defines new DEVS models (i.e. DEVS
is closed under coupling) and complex systems can
then be represented by DEVS in a hierarchical way
(Zeigler et al. 2000).

3.2. Simulation Environment

The DEVSim++ (Kim 2004) is a DEVS simulation
environment based on C++, which is integrated
with the Microsoft Visual Studio.NET. It therefore
provides the advantages of object-oriented frame-
work, such as encapsulation, inheritance, and reuse.
The DEVSim++ coordinates the event schedules of
atomic models in a system and provides classes and
APIs for simulation.

We get several advantages with DEVS formalism
and DEVSim++. First, we can specify the sys-
tems mathematically and easily verify the model.
Second, we can model hierarchical and modu-
larized systems, which enhance understandability
and extensibility. Third, we can reuse simulation
models.

3.3. Naturally Hybrid SPSM Environment using
Formalism Embedding

Traditionally, differential equations have been
solved with numerical integration in discrete time.

Copyright 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 373–383

376 DOI: 10.1002/spip

Research Section Hybrid Software Process Simulation using the DEVS Formalism

In formal terms, differential equation system spec-
ification (DESS) has been embedded into the dis-
crete time system specification (DTSS) (Zeigler et al.
2000). The meaning of ‘embedded’ in this context is
that any system in DESS can be simulated by DTSS.
Of course, errors may be introduced in the DTSS
approximation of the DESS model, but it is tolerable
if the discrete time is small enough. Moreover, any
DTSS can be simulated by the DEVS by constrain-
ing the time advance to be constant. Therefore, if
we constrain the time advance of the DEVS to be
a small enough constant-time, we can model DESS
with DEVS formalism. This formalism embedding
makes DEVS-based hybrid SPSM technique to be
a naturally hybrid simulation modeling approach.
We coined the term ‘naturally hybrid’ because the
formalism embedding provides both discrete and
continuous simulation modeling capabilities in the
same environment.

3.4. DEVS Hybrid SPSM: Hybrid SPSM
Formalism

In this section we define the hybrid simula-
tion modeling formalism for software process
using formalism embedding, which is called
DEVS Hybrid SPSM. We reference the discrete
event and differential equation specified system
(DEV&DESS) formalism (Zeigler et al. 2000) and
extend the DEVS formalism to accommodate the
hybrid characteristics of the software development
process.

Figure 1 illustrates the modeling concept of the
DEVS Hybrid SPSM, which embeds the DESS and
DTSS formalism into DEVS. Input port of X accepts
event segments, which are piecewise constant
segments for numerical integration (Sterman 2004).
The input message contains the flow (rate) and

StockS cont :

phaseY

X

Numerical
Integration

External
Transition

Internal
Transition Output

Y

:phaseC

phaseC ThresholdStock =:

Phase Event Condition Function

Figure 1. The working mechanism of DEVS Hybrid
SPSM formalism

stock variables, which are the output event message
of the previous model. The continuous state,
Scont, represents the stock variable of the system
dynamics, which is used in the phase event
condition function to determine the execution
of the phase event. With input (X), output (Y),
and continuous state (Scont), the atomic model
implements the Euler integration (Sterman 2004)
shown in Equation (2), which is driven by a small
enough constant-time interval.

Scont
t+dt = Scont

t + dt × (Xt − Yt) (2)

The phase output event of Yphase occurs whenever
a phase event condition function, Cphase, becomes
true. The condition can be observed when a certain
software development activity reaches and crosses
a predefined threshold (e.g. if 95% of preliminary
design is completed, then the detailed design can
be started). In such conditions, a phase event,
Yphase, is triggered, which contrasts with the time
events of pure DEVS in that the time events are
scheduled by the time advance function. We define
the DEVS Hybrid SPSM formalism as follows:

DEVS Hybrid SPSM = 〈X, Y, Yphase
, S, δext, δint,

Cphase, λ, ta〉,

where

• X is the set of input values, which include flow
(rate) vectors,

• Y is the set of output values, which include flow
(rate) vectors,

• Yphase is the set of output values, which is the
phase event triggered by phase event condition
function (Cphase),

• S = Sdiscr × Scont is the set of states as a Cartesian
product of discrete states and continuous states,

• δext : Q × X → S is the external transition func-
tion where Q = {(sdiscr, scont, e)|sdiscr ∈ Sdiscr

, scont ∈
Scont

, 0 ≤ e ≤ ta(s)} is the total state set, e is the
time elapsed since last transition,

• δint : S → S is the internal transition function,
• Cphase : Q × X → Bool is the phase event condi-

tion function for conditioning the execution of
the phase event,

• λ : S → Y or Yphase is the output function,
• ta: S → R+

0,∞ is the set positive real number
between 0 and ∞.

Copyright 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 373–383

DOI: 10.1002/spip 377

Research Section K. Choi, D.-H. Bae and T. Kim

SD Model

Requirements Design Implementation Test

Phase
Event

Hybrid software process simulation modeling using DEVS_Hybrid_SPSM
(Naturally hybrid simulation modeling approach)

SD Model SD Model SD Model

Phase
Event

Phase
Event

Phase
Event

Preliminary
Design

Detailed
Design

Test

Feedback loop
approximation:

5-times iterations

Rus and Lakey's
approach

DES Framework

Discrete Process

HR MP Alloc

Plan

QA

SD Framework

Martin and Raffo's
approach

DES

Figure 2. Characteristics of DEVS Hybrid SPSM approach

3.5. Characteristics of the DEVS Hybrid SPSM

Figure 2 illustrates the characteristics of the DEVS
Hybrid SPSM approach compared with the pre-
vious approaches. Rus and Lakey’s approach is
fundamentally a discrete event simulation model
and iterates multiple times within a discrete activ-
ity to incorporate the feedback loops, but it might
not fully represent the feedback loop mechanism
and managerial aspect of the software process.
This approach calculates process factors (e.g. effort,
defects, and schedule) by the product of multiple
factors (e.g. Equation (1)), and some of the fac-
tors are constant. This cannot fully represent the
dynamic behavior of a software development pro-
cess that is represented in stock and flow concept
and in which the process factors are calculated in
the differential equation in the system dynamics
model.

Martin and Raffo’s approach is fundamentally
a system dynamics model of Abdel-Hamid and
Madnick (1991). The continuously varying project
variables (i.e. allocated manpower levels) are passed
to the discrete process model (ISPW-6 process
example (Kellner et al. 1991)) and the total effort

and errors are passed out to the system dynamics
portion of the model. However, this approach might
not calculate the activity duration dynamically.

In our DEVS Hybrid SPSM approach, each phase
(e.g. requirements) by itself is a system dynamics
model and the discrete phase transition explicitly
occurs by the phase event, which transmits all
the necessary dynamic variables through the event
message to the next phase. The message, which is
predefined, updates all the variables in the next
phase model and collects the simulation data in the
phase. Therefore, this approach can represent the
discrete activities explicitly and consistently with
the continuously varying project environments by
fully incorporating the feedback mechanism of the
system dynamics. This approach can also analyze
the performance of each discrete process explicitly
by capturing the phase output message.

Other advantages of this approach are that it
provides a modularized and extensible simulation
modeling environment. We modularize the simu-
lation model by encapsulating closely related vari-
ables in one atomic model and hide the complexity
of the simulation model from the end user by pro-
viding explicit interface for the simulation model.

Copyright 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 373–383

378 DOI: 10.1002/spip

Research Section Hybrid Software Process Simulation using the DEVS Formalism

We also provide the explicit extension point through
input and output ports. If any model has a compati-
ble input or output port, the model can be extended.
We can also reuse the simulation model by using
the inheritance mechanism of the object-oriented
framework of the DEVSim++ environment.

4. CASE STUDY: IMPLEMENTING
WATERFALL-LIKE HYBRID SOFTWARE
PROCESS SIMULATION MODEL USING
THE DEVS HYBRID SPSM

This section describes how to model a
software development process using the
DEVS Hybrid SPSM formalism. We have devel-
oped a generic building block for the develop-
ment phase (activity) and implement a Waterfall-
like hybrid software process simulation model by
extending the generic building block. We have
referenced and used the equations of the system
dynamics models provided by Vensim simulation
tool (Vensim 2004) and Abdel-Hamid and Madnick
(1991). You can refer the detailed procedure for
developing the hybrid software process simulation

model using DEVS Hybrid SPSM in the literature
(Choi et al. 2005). The objectives of this case study
are to provide the validation of this approach and
to introduce a new method to model and analyze
the software process more realistically.

4.1. Architecture of the Generic Building Block

Figure 3 shows the overall architecture of the
generic building block, which is composed of a
‘DevelopmentPhase’ and an ‘ExperimentalFrame’
model. It shows the most basic structure of the
software development project. The ‘Development-
Phase’ model represents any phase of the software
development life-cycle, such as requirements, and
can be extended to a Waterfall or Incremental life-
cycle by coupling the ‘DevelopmentPhase’ model to
each other through the explicit extension point (e.g.
input or output port such as ‘Time’, ‘WorkMoni-
toring’, and ‘Done’). The ‘WorkToBeDone’ model
stores the amount of work to be done and sends
it to the ‘Work’ model. The ‘Work’ model contains
several submodels that calculate work flow, quality,
etc. The ‘WorkDone’ model integrates the workflow
rate to compute the work done, and the ‘Rework’

SW_Project_Management_Simulation_System

WorkDone

WorkflowRate_Quality_Out

WorkflowRate_Quality_In

Done

Work

WorkToDo WorkflowRate_Quality

SimAnalysis

Done

WorkToDo ProjStop

Rework
Workflow_Rework_Rate

WorkflowRate_Quality_In

WorkToBeDone
TotalWork

Time

WorkToDo

TimeIntervalGenerator

Done
Time

ExperimentalFrame

Done

ProjDone

WorkMonitoringTime

DevelopmentPhase

DoneWorkMonitoringTime

Work In

Workflow_Rework_Rate

WorkToDo WorkMonitoring

Figure 3. Overall architecture of a generic building block of DEVS-based SPSM

Copyright 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 373–383

DOI: 10.1002/spip 379

Research Section K. Choi, D.-H. Bae and T. Kim

model computes the amount of rework to be done
and sends the rework rate to the ‘WorkToBeDone’
model.

The ‘ExperimentalFrame’ model plays the role
of a measurement system or observer, like an
oscilloscope in Electronics. It generates an input
to the observed system and accepts and analyzes
the simulation data. In this simulation model it
generates the ‘WorkToDo’ message, which is the
initial work to be done. The ‘WorkToDo’ mes-
sage will be processed by the ‘DevelopmentPhase’
model and it sends the simulation data, as a ‘Work-
Monitoring’ message, to the ‘ExperimentalFrame’
model.

The ‘TimeIntervalGenerator’ model in the ‘Exper-
imentalFrame’ is an executive that drives the simu-
lation execution. It generates a Time event in a small
enough constant-time interval to make the ‘Work-
ToBeDone’ model change its state and generate the
‘WorkToDo’ message. The ‘TimeIntervalGenerator’
model enables the project variables to dynami-
cally interact with each other, which allows this
model to become a naturally hybrid simulation
model.

All messages in this model include stock (level)
variables, flow (rate) variables, and auxiliary vari-
ables in system dynamics representation, which are
dynamically updated through the feedback loop.
The ‘WorkMonitoring’ message contains simula-
tion status variables that are stored and analyzed

by the ‘SimAnalysis’ model in the ‘Experimental-
Frame’ model. The ‘Done’ message generated by the
‘WorkDone’ model makes this simulation model
stop.

4.2. Extending the Waterfall-like Software
Process Simulation Model

Figure 4 shows the Waterfall-like life-cycle model
that is extended by coupling the ‘Development-
Phase’ model to each other. The ‘Waterfall’ model
starts when it receives ‘WorkIn’ input and ends
when it receives the ‘ProjDone’ message. The
‘Requirements’ model performs the job and out-
puts the ‘Done’ message when it completes the job.
This message contains all the dynamic variables in
the Requirements phase and transmits the infor-
mation to the Design phase. The ‘WorkMonitoring’
message of each phase is sent to the ‘Experimen-
talFrame’ model, which analyzes the performance
of each discrete process explicitly. This model fully
incorporates the feedback mechanism of the system
dynamics and makes the discrete activities consis-
tent with the activities of the continuously varying
project environment variables.

Table 2 shows the specification of the ‘WorkDone’
model in the requirements phase, which generates
the phase event when the requirements activity is
more than 95% complete. This makes it explicit and
easy to control the process sequencing.

Waterfall_Lifecycle_Model

TestWorkIn
Done

WorkMonitoring

Design

WorkMonitoring

WorkIn

Time

Done

Implementation

WorkIn

Done

WorkMonitoringTime

ExperimentalFrame

Done WorkMonitoringTime
ProjDoneWorkToDo

Requirements
Done

Waterfall

ProjDoneDone

WorkIn

Time WorkMonitoring

WorkIn

Time WorkMonitoring
Time

Figure 4. Extended model: waterfall model

Copyright 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 373–383

380 DOI: 10.1002/spip

Research Section Hybrid Software Process Simulation using the DEVS Formalism

Table 2. DEVS Hybrid SPSM specification of the WorkDone
model

WorkDone = 〈X, Y, Yphase
, S, δext, δint, Cphase, λ, ta〉

X = {WorkflowRate Quality In}
Y = {WorkflowRate Quality Out}
Yphase = {Requirements Done}
S = WorkDone Discr × WorkDone Percent;
WorkDone Discr = {Wait, AccumulateWorkDone, Done, Stop},
WorkDone Percent = [0, 100]

δext((Wait, WorkDone Percent), WorkflowRate Quality In) =
(AccumulateWorkDone, WorkDone Percent)
δint((AccumulateWorkDone, WorkDone Percent)) = (Wait,
WorkDone Percent)
δint((Done, WorkDone Percent)) = (Wait, WorkDone Percent)
Cphase(100.0 > WorkDone Percent ≥ 95.0); S = (Done,
WorkDone Percent)
Cphase(WorkDone Percent = 100.0); S = (Stop,
WorkDone Percent)
λ((AccumulateWorkDone, WorkDone Percent)) = λ((Done,
WorkDone Percent)) = WorkflowRate Quality Out
ta((Wait, WorkDone Percent)) = ta((Stop, WorkDone Percent))
= Infinity
ta((AccumulateWorkDone, WorkDone Percent) = ta((Done,
WorkDone Percent) = 0

4.3. Simulation Results Analysis

The implemented simulation model, which is
available for research purposes in the author’s
site (http://se.kaist.ac.kr/∼kschoi/DEVS Hybrid
SPSM/), estimates the cost (Person-Month) and
duration (Month) of a project using the initially
estimated project size and duration. We can also
set the variables, such as the average productivity
and average quality of staffs, for each phase with
different values, which makes this approach more
realistic than others. In most previous research the
variables are constant through the development
cycle, which means that it is difficult to include the
characteristics of each discrete activity explicitly in
the simulation model. The developed simulation
model allows various estimations and analyses
during the development period through various
charts, such as the accumulated project effort chart,
undiscovered rework chart, and overtime chart, as
shown in Figure 5.

Figure 5 shows the effects of the difference in the
quality of individual staff in each discrete phase. It
is valuable for planning and controlling the project
to be able to predict the effort and duration of each
phase when the average quality of staff planned to
be assigned to each phase is variable. The factors
affecting the error generation rate in a software
project can be categorized into two: organization’s

factors (e.g. quality of staff and level of technique)
and project factors (e.g. complexity, size of system,
language) (Abdel-Hamid and Madnick 1991). In
most previous research, the error generation rate is
dependent on the percentage of the job completed
or amount of overtime. They, however, have not
taken into account the variable quality of the staff
in each phase, to the best of my knowledge.

Chart (1) in Figure 5 shows the result when the
average quality of staff throughout the development
cycle is 0.9, which means that 10% of the completed
job by the staff is erroneous. The accumulated total
effort of Chart (1) is 128.8 (Person-Month) and the
duration is 16.4 (Month). Chart (2) shows that the
effort and duration are increased to 137.7 (Person-
Month) and 17.1 (Month) because the average
quality of staff in the implementation phase is
lowered from 0.9 to 0.8.

Chart (3) in Figure 5 shows the amount of undis-
covered rework (errors) in each phase when the
average quality of staff throughout the develop-
ment cycle is 0.9, and Chart (4) shows the amount of
undiscovered rework in each phase when the aver-
age quality of staff in the implementation phase is
0.8 and in the other phases is 0.9. Chart (4) implies
that the undiscovered rework of the implementa-
tion phase is increased owing to the lower average
quality of staff, which causes the cost and duration
to increase. We have run the simulation to find out
the phase that is most sensitive for the lower average
quality of staff. To do so, we changed the average
quality of staff in the phases, one at a time, to 0.8
instead of 0.9. Table 3 shows that the implementa-
tion phase influences the project cost and effort the
most.

Chart (5) and (6) show the increase in the over-
time by changing the average quality of the staff
in the implementation phase from 0.9 to 0.8. The
scale of the overtime, for instance 1.1, means that
the working time of a staff is 10% more than the reg-
ular working time of the organization. In Chart (6),
the amount of overtime in the implementation and
test phase is increased because the work size is
increased as the project deadline is imminent.

This simulation run assumes that the resource
is not constrained. We can extend this simu-
lation model to include the resource constraint
situation by adding a resource pool model that
allocates the manpower when each phase sends
a resource request event message. This extension

Copyright 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 373–383

DOI: 10.1002/spip 381

Research Section K. Choi, D.-H. Bae and T. Kim

Figure 5. Simulation results analysis charts: average quality of staff in all the phases shown in (1), (3), and (5) is 0.9,
average quality of staff in the implementation phase shown in (2), (4), and (6) is 0.8

Table 3. Influences of the average quality of staff in each phase

Average quality of staff
(default: 0.9)

Normal
(0.9)

Requirements
(0.8)

Design
(0.8)

Implementation
(0.8)

Test
(0.8)

Total effort (person-month) 128.8 130.9 132.6 137.7 134
Duration (month) 16.4 16.4 16.5 17.1 16.9

might provide a detailed analysis capability on the
resource allocation policy.

5. CONCLUSION AND FUTURE WORK

We have proposed a hybrid SPSM method using
the DEVS Hybrid SPSM formalism, which extends
the DEVS formalism to apply it to the hybrid
SPSM domain. This approach fully incorporates the

feedback structure of the system dynamics, which
was partially fulfilled in previous research, and
explicitly represents the discrete activities, which
enables us to analyze the performance of not only
the overall process but also the discrete activities.
This approach also provides clear specifications
for model verification, explicit extension points
to extend the model, and reuse mechanisms. We
have also shown the applicability of our approach
with the example of Waterfall-like life-cycle model.

Copyright 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 373–383

382 DOI: 10.1002/spip

Research Section Hybrid Software Process Simulation using the DEVS Formalism

The simulation model provides powerful analysis
capabilities that are not available in the discrete or
continuous model alone and even in the existing
hybrid approaches.

However, our approach has some limitations
at this point because it is difficult to understand
the formalism for industrial practitioners, and the
case study described is not enough to show all the
benefits of our approach. We, therefore, have a plan
to model a large-scale software-intensive system
acquisition process of a military domain, which
usually has a set of strict milestones separating
the phases, takes a long time, and incorporates
complicated communication channels and various
levels of decision-making. This work will give us a
chance to evaluate and enhance our approach.

ACKNOWLEDGEMENTS

This work was supported by the Ministry of
Information & Communication, Korea, under the
Information Technology Research Center (ITRC)
Support Program.

REFERENCES

Abdel-Hamid T, Madnick S. 1991. Software Project
Dynamics: An Integrated Approach. Prentice-Hall:
Englewood Cliffs, NJ.

Choi K, Bae D, Kim T. 2005. DEVS-based software process
simulation modeling: formally specified, modularized,
and extensible SPSM. In Proceedings of the International
Workshop on Software Process Modeling and Simulation
(ProSim ‘05), St. Louis, MO.

Donzelli P, Iazeolla G. 2001. Hybrid simulation modeling
of the software process. Journal of Systems and Software
59(3): 227–235.

Kellner MI, Feiler PH, Finkelstein A, Katayama T,
Osterweil LJ, Penedo MH, Rombach MD. 1991. ISPW-
6 Software process example. Proceedings of the
First International Conference on Software Process. IEEE
Computer Society: Redondo Beach, CA, 176–186.

Kofman E, Lapadula M, Pagliero E. 2003. PowerDEVS:
a DEVS-based environment for hybrid system mod-
eling and simulation. Technical Report LSD0306,
http://usuarios.fceia.unr.edu.ar/∼Kofman/pubs.html
LSD, Universidad Nacional de Rosario.

Kim T. 2004. DEVSimHLA v2.2.0 Developer’s Man-
ual. Korea Advanced Institute of Science and Tech-
nology (KAIST), http://smslab.kaist.ac.kr/DES/devsim
download.htm.

Lakey P. 2003. A hybrid software process simulation
model for project management. In Proceedings of the
International Workshop on Software Process Modeling and
Simulation (ProSim ‘03), Portland, OR.

Martin R, Raffo D. 2000. A model of the software
development process using both continuous and discrete
models. Software Process: Improvement and Practice 5:
147–157.

Rus I, Collofello J, Lakey P. 1999. Software process
simulation for reliability management. Journal of Systems
and Software 46(2–3): 173–182.

Sterman J. 2004. Business Dynamics: Systems Thinking and
Modeling for a Complex World. McGraw-Hill: New York.

Vensim. 2004. Vensim Modeling Guide. http://www.
vensim.com/documentation.html Ventana Systems, Inc.

Zeigler B, Pracehofer H, Kim T. 2000. Theory of Modeling
and Simulation, 2nd edn. Academic Press: New York.

Copyright 2006 John Wiley & Sons, Ltd. Softw. Process Improve. Pract., 2006; 11: 373–383

DOI: 10.1002/spip 383

